Orbital excitation blockade and algorithmic cooling in quantum gases

被引:73
作者
Bakr, Waseem S. [1 ]
Preiss, Philipp M. [1 ]
Tai, M. Eric [1 ]
Ma, Ruichao [1 ]
Simon, Jonathan [1 ]
Greiner, Markus [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
MOTT INSULATOR; OPTICAL LATTICES; RYDBERG BLOCKADE; ATOMS; TRANSITION; SUPERFLUID; PHYSICS;
D O I
10.1038/nature10668
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Interaction blockade occurs when strong interactions in a confined, few-body system prevent a particle from occupying an otherwise accessible quantum state. Blockade phenomena reveal the underlying granular nature of quantum systems and allow for the detection and manipulation of the constituent particles, be they electrons(1), spins(2), atoms(3-5) or photons(6). Applications include single-electron transistors based on electronic Coulomb blockade(7) and quantum logic gates in Rydberg atoms(8,9). Here we report a form of interaction blockade that occurs when transferring ultracold atoms between orbitals in an optical lattice. We call this orbital excitation blockade (OEB). In this system, atoms at the same lattice site undergo coherent collisions described by a contact interaction whose strength depends strongly on the orbital wavefunctions of the atoms. We induce coherent orbital excitations by modulating the lattice depth, and observe staircase-like excitation behaviour as we cross the interaction-split resonances by tuning the modulation frequency. As an application of OEB, we demonstrate algorithmic cooling(10,11) of quantum gases: a sequence of reversible OEB-based quantum operations isolates the entropy in one part of the system and then an irreversible step removes the entropy from the gas. This technique may make it possible to cool quantum gases to have the ultralow entropies required for quantum simulation(12,13) of strongly correlated electron systems. In addition, the close analogy between OEB and dipole blockade in Rydberg atoms provides a plan for the implementation of two-quantum-bit gates(14) in a quantum computing architecture with natural scalability.
引用
收藏
页码:500 / U118
页数:5
相关论文
共 31 条
  • [1] Probing the Superfluid-to-Mott Insulator Transition at the Single-Atom Level
    Bakr, W. S.
    Peng, A.
    Tai, M. E.
    Ma, R.
    Simon, J.
    Gillen, J. I.
    Foelling, S.
    Pollet, L.
    Greiner, M.
    [J]. SCIENCE, 2010, 329 (5991) : 547 - 550
  • [2] Experimental implementation of heat-bath algorithmic cooling using solid-state nuclear magnetic resonance
    Baugh, J
    Moussa, O
    Ryan, CA
    Nayak, A
    Laflamme, R
    [J]. NATURE, 2005, 438 (7067) : 470 - 473
  • [3] Photon blockade in an optical cavity with one trapped atom
    Birnbaum, KM
    Boca, A
    Miller, R
    Boozer, AD
    Northup, TE
    Kimble, HJ
    [J]. NATURE, 2005, 436 (7047) : 87 - 90
  • [4] Many-body physics with ultracold gases
    Bloch, Immanuel
    Dalibard, Jean
    Zwerger, Wilhelm
    [J]. REVIEWS OF MODERN PHYSICS, 2008, 80 (03) : 885 - 964
  • [5] Algorithmic cooling and scalable NMR quantum computers
    Boykin, PO
    Mor, T
    Roychowdhury, V
    Vatan, F
    Vrijen, R
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (06) : 3388 - 3393
  • [6] Imaging the Mott insulator shells by using atomic clock shifts
    Campbell, Gretchen K.
    Mun, Jongchul
    Boyd, Micah
    Medley, Patrick
    Leanhardt, Aaron E.
    Marcassa, Luis G.
    Pritchard, David E.
    Ketterle, Wolfgang
    [J]. SCIENCE, 2006, 313 (5787) : 649 - 652
  • [7] Counting atoms using interaction blockade in an optical superlattice
    Cheinet, P.
    Trotzky, S.
    Feld, M.
    Schnorrberger, U.
    Moreno-Cardoner, M.
    Foelling, S.
    Bloch, I.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (09)
  • [8] Observation of collective excitation of two individual atoms in the Rydberg blockade regime
    Gaetan, Alpha
    Miroshnychenko, Yevhen
    Wilk, Tatjana
    Chotia, Amodsen
    Viteau, Matthieu
    Comparat, Daniel
    Pillet, Pierre
    Browaeys, Antoine
    Grangier, Philippe
    [J]. NATURE PHYSICS, 2009, 5 (02) : 115 - 118
  • [9] Grabert H., 1992, SINGLE CHARGE TUNNEL, P21
  • [10] Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms
    Greiner, M
    Mandel, O
    Esslinger, T
    Hänsch, TW
    Bloch, I
    [J]. NATURE, 2002, 415 (6867) : 39 - 44