Existence and bifurcation of solutions for an elliptic degenerate problem

被引:57
作者
Berestycki, H [1 ]
Esteban, MJ [1 ]
机构
[1] UNIV PARIS 09,CEREMADE,F-75775 PARIS 16,FRANCE
关键词
D O I
10.1006/jdeq.1996.3165
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the existence, multiplicity and bifurcation of solutions of a model nonlinear degenerate elliptic differential equation: -x(2)u '' = lambda u + /u/(p-1) u in (0, 1); u(0) = u(1) = 0. This model is related to a simplified version of the nonlinear Wheeler-DeWitt equation as it appears in quantum cosmological models. We prove the existence of multiple positive solutions. More precisely, we show that there exists an infinite number of connected branches of solutions which bifurcate From the bottom of the essential spectrum of the corresponding linear operator. (C) 1997 Academic Press.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 27 条
[1]  
Benci V., 1981, COMMUN PART DIFF EQ, V6, P249
[2]   NUMBER OF SOLUTIONS OF CERTAIN SEMI-LINEAR ELLIPTIC PROBLEMS [J].
BERESTYCKI, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1981, 40 (01) :1-29
[3]  
BERESTYCKI H, 1993, J MATH PURE APPL, V72, P493
[4]  
BERESTYCKI H, 1992, CR ACAD SCI I-MATH, V315, P1375
[5]  
BERESTYCKI H, 1979, NOTE CRAS A
[6]   EXISTENCE AND BIFURCATION THEOREMS FOR NON-LINEAR ELLIPTIC EIGENVALUE PROBLEMS ON UNBOUNDED-DOMAINS [J].
BONGERS, A ;
HEINZ, HP ;
KUPPER, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 47 (03) :327-357
[7]  
BUFFONI B, 1993, J REINE ANGEW MATH, V445, P1
[8]   UNIQUENESS AND BIFURCATION FOR SOLUTIONS OF NONLINEAR STURM-LIOUVILLE EIGENVALUE PROBLEMS [J].
CHEN, CN .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 111 (01) :51-85
[9]   MULTIPLE SOLUTIONS FOR A CLASS OF NONLINEAR STURM-LIOUVILLE PROBLEMS ON THE HALF LINE [J].
CHEN, CN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 85 (02) :236-275
[10]   THE CAUCHY-PROBLEM FOR A NONLINEAR WHEELER-DEWITT EQUATION [J].
DIAS, JP ;
FIGUEIRA, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1993, 10 (01) :99-107