Influence of implant length and diameter on stress distribution:: A finite element analysis

被引:270
作者
Himmlová, L
Dostálová, T
Kácovsky, A
Konvicková, S
机构
[1] Inst Dent Res, Prague 12021 2, Czech Republic
[2] Czech Tech Univ, CR-16635 Prague, Czech Republic
关键词
D O I
10.1016/j.prosdent.2003.08.008
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Statement of problem. Masticatory forces acting on dental implants can result in undesirable stress in adjacent bone, which in turn can cause bone defects and the eventual failure of implants. Purpose. A mathematical simulation of stress distribution around implants was used to determine which length and diameter of implants would be best to dissipate stress. Material and methods. Computations of stress arising in the implant bed were made with finite element analysis, using 3-dimensional computer models. The models simulated implants placed in vertical positions in the molar region of the mandible. A model simulating an implant with a diameter of 3.6 min and lengths of 8 min, 10 mm, 12 mm, 14 mm, 16 mm, 17 mm, and 18 min was developed to investigate the influence of the length factor. The influence of different diameters was modeled using implants with a length of 12 min and diameters of 2.9 mm, 3.6 mm, 4.2 mm, 5.0 mm, 5.5 mm, 6.0 mm, and 6.5 mm. The masticatory load was simulated using an average masticatory, force in a natural direction, oblique to the occlusal plane. Values of von Mises equivalent stress at the implant-bone interface were computed using the finite element analysis for all variations. Values for the 3 most stressed elements of each variation were averaged and expressed in percent of values computed for reference (100%), which was the stress magnitude for the implant with a length of 12 min and diameter of 3.6 min. Results. Maximum stress areas were located around the implant neck. The decrease in stress was the greatest (31.5%) for implants with a diameter ranging from of 3.6 turn to 4.2 mm. Further stress reduction for the 5.0-mm implant was only 16.4%. An increase in the implant length also led to a decrease in the maximum von Mises equivalent stress values; the influence of implant length, however, was not as pronounced as that of implant diameter. Conclusions. Within the limitations of this study, an increase in the implant diameter decreased the maximum von Mises equivalent stress around the implant neck more than an increase in the implant length, as a result of a more favorable distribution of the simulated masticatory forces applied in this study.
引用
收藏
页码:20 / 25
页数:6
相关论文
共 17 条
[1]  
Akpinar I, 1996, Quintessence Int, V27, P11
[2]  
Bathe K.J., 1996, FINITE ELEMENT PROCE, P148
[3]  
Carr AB, 2000, INT J ORAL MAX IMPL, V15, P785
[4]   Mechanical factors in bone growth and development [J].
Carter, DR ;
VanderMeulen, MCH ;
Beaupre, GS .
BONE, 1996, 18 (01) :S5-S10
[5]  
Davarpanah M, 2000, INT J ORAL MAX IMPL, V15, P865
[6]  
Holmes D C, 1997, J Oral Implantol, V23, P104
[7]  
Holmgren E P, 1998, J Oral Implantol, V24, P80, DOI 10.1563/1548-1336(1998)024<0080:EPOODI>2.3.CO
[8]  
2
[9]   Loss of osseointegration caused by occlusal load of oral implants - A clinical and radiographic study in monkeys [J].
Isidor, F .
CLINICAL ORAL IMPLANTS RESEARCH, 1996, 7 (02) :143-152
[10]  
Lai H, 1998, Chin J Dent Res, V1, P7