Polymorphic variations in manganese superoxide dismutase (MnSOD), glutathione peroxidase-1 (GPX1), and catalase (CAT) contribute to elevated plasma triglyceride levels in Chinese patients with type 2 diabetes or diabetic cardiovascular disease

被引:65
作者
Chen, Hong [1 ]
Yu, Ming [2 ]
Li, Ming [1 ]
Zhao, Ruie [1 ]
Zhu, Qihan [1 ]
Zhou, Wenrui [1 ]
Lu, Ming [1 ]
Lu, Yufeng [1 ]
Zheng, Taishan [1 ]
Jiang, Jiamei [1 ]
Zhao, Weijing [1 ]
Xiang, Kunsan [1 ]
Jia, Weiping [1 ]
Liu, Limei [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Endocrinol & Metab, Shanghai Diabet Inst, Affiliated Peoples Hosp 6, Shanghai 200233, Peoples R China
[2] Shanghai Univ Tradit Chinese Med, Dept Endocrinol & Metab, Putuo Hosp, Shanghai, Peoples R China
关键词
Manganese superoxide dismutase; Glutathione peroxidase-1; Catalase; Type; 2; diabetes; Diabetic cardiovascular disease; OXIDATIVE STRESS; GENE; COMPLICATIONS; MITOCHONDRIAL; ASSOCIATION; DYSFUNCTION; VARIANTS; MELLITUS; INDIANS;
D O I
10.1007/s11010-011-1160-3
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Manganese superoxide dismutase (MnSOD), glutathione peroxidase-1 (GPX1), and catalase (CAT) provide the primary antioxidant defense system. Impaired antioxidant defense increases oxidative stress and contributes to the development of type 2 diabetes and diabetic cardiovascular disease (CVD). We preformed a case-control study in Chinese type 2 diabetes patients, to determine if the MnSOD Val16Ala (T -> C), GPX1 Pro198Leu (C -> T), and CAT -262C/T (C -> T) functional polymorphisms contribute to the development of type 2 diabetes or diabetic CVD. Patients with type 2 diabetes (n = 168) were divided into the non-CVD group (n = 83, > 10 year since diagnosis) and CVD group (n = 85, history of ischemic CVD). Genotyping was performed using PCR-restriction fragment length polymorphism (PCR-RFLP) or PCR-based direct sequencing. The genotypic distribution in the non-CVD- and CVD-group and the clinical parameters in genotypic groups were not significantly different in the three polymorphic sites, respectively. Among eight genotypic combinations, the most common TT+CC+CC genotype (59.5%) was associated with higher triglyceride levels than the TT+CT+CC genotype, the second frequent one (14.9%; 1.77 +/- A 0.12 vs. 1.21 +/- A 0.11 mmol/l, P = 0.001), and all non-TT+CC+CC genotypes (40.5%; 1.77 +/- A 0.12 vs. 1.43 +/- A 0.12 mmol/l, P = 0.048). In the CVD group, significantly elevated triglyceride levels were also observed in patients with TT+CC+CC compared to patients with TT+CT+CC (2.00 +/- A 0.18 vs. 1.37 +/- A 0.16 mmol/l, P = 0.018) or non-TT+CC+CC genotypes (2.00 +/- A 0.18 vs. 1.65 +/- A 0.19 mmol/l, P = 0.070). The common MnSOD, GPX1, and CAT TT+CC+CC genotype may contribute to hypertriglyceridemia in Chinese patients with type 2 diabetes or diabetic CVD.
引用
收藏
页码:85 / 91
页数:7
相关论文
共 32 条
[1]   Hyperlipidaemia and cardiovascular disease: inflammation and oxidative stress in diabetic patients [J].
Aviram, Michael .
CURRENT OPINION IN LIPIDOLOGY, 2009, 20 (03) :258-259
[2]   Genotype-activity relationship for Mn-superoxide dismutase, glutathione peroxidase 1 and catalase in humans [J].
Bastaki, Maria ;
Huen, Karen ;
Manzanillo, Paolo ;
Chande, Neha ;
Chen, Connie ;
Balmes, John R. ;
Tager, Ira B. ;
Holland, Nina .
PHARMACOGENETICS AND GENOMICS, 2006, 16 (04) :279-286
[3]   A new type 1 diabetes susceptibitity locus containing the catalase gene (chromosome 11p13) in a Russian population [J].
Chistiakov, DA ;
Savost'anov, KV ;
Turakulov, RI ;
Titovich, EV ;
Zilberman, LI ;
Kuraeva, TL ;
Dedov, II ;
Nosikov, VV .
DIABETES-METABOLISM RESEARCH AND REVIEWS, 2004, 20 (03) :219-224
[4]   Diabetes and vascular disease -: Pathophysiology, clinical consequences, and medical therapy:: Part I [J].
Creager, MA ;
Lüscher, TF ;
Cosentino, F ;
Beckman, JA .
CIRCULATION, 2003, 108 (12) :1527-1532
[5]  
CUMMINGS MH, 1995, DIABETOLOGIA, V38, P959, DOI 10.1007/s001250050378
[6]   The catalase-262C/T promoter polymorphism and diabetic complications in Caucasians with type 2 diabetes [J].
dos Santos, Katia Goncalves ;
Canani, Luis Henrique ;
Gross, Jorge Luiz ;
Tschiedel, Balduino ;
Pires Souto, Katia Elisabete ;
Roisenberg, Israel .
DISEASE MARKERS, 2006, 22 (5-6) :355-359
[7]   Cellular glutathione peroxidase deficiency and endothelial dysfunction [J].
Forgione, MA ;
Weiss, N ;
Heydrick, S ;
Cap, A ;
Klings, ES ;
Bierl, C ;
Eberhardt, RT ;
Farber, HW ;
Loscalzo, J .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2002, 282 (04) :H1255-H1261
[8]   A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels [J].
Forsberg, L ;
Lyrenäs, L ;
de Faire, U ;
Morgenstern, R .
FREE RADICAL BIOLOGY AND MEDICINE, 2001, 30 (05) :500-505
[9]   Increased gene expression of antioxidant enzymes in KKAy diabetic mice but not in STZ diabetic mice [J].
Fujita, A ;
Sasaki, H ;
Ogawa, K ;
Okamoto, K ;
Matsuno, S ;
Matsumoto, E ;
Furuta, H ;
Nishi, M ;
Nakao, T ;
Tsuno, T ;
Taniguchi, H ;
Nanjo, K .
DIABETES RESEARCH AND CLINICAL PRACTICE, 2005, 69 (02) :113-119
[10]   Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes [J].
Gaetani, GF ;
Ferraris, AM ;
Rolfo, M ;
Mangerini, R ;
Arena, S ;
Kirkman, HN .
BLOOD, 1996, 87 (04) :1595-1599