Stability analysis for boundary value problems with generalized nonlocal condition via Hilfer-Katugampola fractional derivative

被引:27
|
作者
Ahmed, Idris [1 ,2 ,3 ]
Kumam, Poom [2 ,4 ]
Jarad, Fahd [5 ]
Borisut, Piyachat [1 ,2 ]
Sitthithakerngkiet, Kanokwan [6 ]
Ibrahim, Alhassan [7 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Dept Math, KMUTTFixed Point Res Lab, Room SCL 802 Fixed Point Lab,Sci Lab Bldg, Bangkok, Thailand
[2] King Mongkuts Univ Technol Thonburi KMUTT, Ctr Excellence Theoret & Computat Sci TaCS CoE, Sci Lab Bldg, Bangkok, Thailand
[3] Sule Lamido Univ, Dept Math & Comp Sci, Kafin Hausa, Nigeria
[4] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[5] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey
[6] King Mongkuts Univ Technol North Bangkok KMUTNB, Fac Appl Sci, Dept Math, Intelligent & Nonlinear Dynam Innovat Res Ctr, Bangkok, Thailand
[7] Bayero Univ Kano, Sch Continuing Educ, Kano, Nigeria
关键词
Hilfer fractional derivative; Stability; Volterra integral equation; Nonlocal integral condition; INITIAL-VALUE PROBLEMS; DIFFERENTIAL-EQUATIONS; EXISTENCE;
D O I
10.1186/s13662-020-02681-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research, we present the stability analysis of a fractional differential equation of a generalized Liouville-Caputo-type (Katugampola) via the Hilfer fractional derivative with a nonlocal integral boundary condition. Besides, we derive the relation between the proposed problem and the Volterra integral equation. Using the concepts of Banach and Krasnoselskii's fixed point theorems, we investigate the existence and uniqueness of solutions to the proposed problem. Finally, we present two examples to clarify the abstract result.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Stability analysis for boundary value problems with generalized nonlocal condition via Hilfer–Katugampola fractional derivative
    Idris Ahmed
    Poom Kumam
    Fahd Jarad
    Piyachat Borisut
    Kanokwan Sitthithakerngkiet
    Alhassan Ibrahim
    Advances in Difference Equations, 2020
  • [2] Ulam stability for nonlocal differential equations involving the Hilfer-Katugampola fractional derivative
    Benchohra, Mouffak
    Bouriah, Soufyane
    Henderson, Johnny
    AFRIKA MATEMATIKA, 2021, 32 (5-6) : 829 - 851
  • [3] ON THE EXISTENCE AND STABILITY OF BOUNDARY VALUE PROBLEM FOR DIFFERENTIAL EQUATION WITH HILFER-KATUGAMPOLA FRACTIONAL DERIVATIVE
    E.M.ELSAYED
    S.HARIKRISHNAN
    K.KANAGARAJAN
    ActaMathematicaScientia, 2019, 39 (06) : 1568 - 1578
  • [4] On the Existence and Stability of Boundary Value Problem for Differential Equation with Hilfer-Katugampola Fractional Derivative
    Elsayed, E. M.
    Harikrishnan, S.
    Kanagarajan, K.
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (06) : 1568 - 1578
  • [5] On the Existence and Stability of Boundary Value Problem for Differential Equation with Hilfer-Katugampola Fractional Derivative
    E. M. Elsayed
    S. Harikrishnan
    K. Kanagarajan
    Acta Mathematica Scientia, 2019, 39 : 1568 - 1578
  • [6] A study on Hilfer-Katugampola fractional differential equations with boundary conditions
    Zhang, Jing
    Gou, Haide
    BOUNDARY VALUE PROBLEMS, 2025, 2025 (01):
  • [7] Terminal Value Problem for Differential Equations with Hilfer-Katugampola Fractional Derivative
    Benchohra, Mouffak
    Bouriah, Soufyane
    Nieto, Juan J.
    SYMMETRY-BASEL, 2019, 11 (05):
  • [8] Terminal value problem for neutral fractional functional differential equations with Hilfer-Katugampola fractional derivative
    Bouriah, Soufyane
    Benchohra, Mouffak
    Ozyurt, Selma Gulyaz
    FILOMAT, 2023, 37 (21) : 7131 - 7147
  • [9] U am stability for nonlinear implicit differential equations with Hilfer-Katugampola fractional derivative and impulses
    Bouriah, Soufyane
    Benchohra, Mouffak
    Nieto, Juan J.
    Zhou, Yong
    AIMS MATHEMATICS, 2022, 7 (07): : 12859 - 12884
  • [10] Ulam stability for nonlocal differential equations involving the Hilfer–Katugampola fractional derivative
    Mouffak Benchohra
    Soufyane Bouriah
    Johnny Henderson
    Afrika Matematika, 2021, 32 : 829 - 851