Head injury or head motion? Assessment and quantification of motion artifacts in diffusion tensor imaging studies

被引:103
作者
Ling, Josef [1 ]
Merideth, Flannery [1 ]
Caprihan, Arvind [1 ]
Pena, Amanda [1 ]
Teshiba, Terri [1 ]
Mayer, Andrew R. [1 ,2 ]
机构
[1] Mind Res Network, Albuquerque, NM 87106 USA
[2] Univ New Mexico, Sch Med, Dept Neurol, Albuquerque, NM 87131 USA
基金
美国国家卫生研究院;
关键词
mild TBI; DTI; diffusion tensor imaging; gradient sampling schemes; motion; simulations; TRAUMATIC BRAIN-INJURY; PRINCIPAL EIGENVECTOR MEASUREMENTS; STIMULUS-CORRELATED MOTION; FRACTIONAL ANISOTROPY; MEAN DIFFUSIVITY; WEIGHTED MRI; FMRI; DTI; ACQUISITION; SCHEMES;
D O I
10.1002/hbm.21192
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The relationship between head motion and diffusion values such as fractional anisotropy (FA) and mean diffusivity (MD) is currently not well understood. Simulation studies suggest that head motion may introduce either a positive or negative bias, but this has not been quantified in clinical studies. Moreover, alternative measures for removing bias as result of head motion, such as the removal of problematic gradients, has been suggested but not carefully evaluated. The current study examined the impact of head motion on FA and MD across three common pipelines (tract-based spatial statistics, voxelwise, and region of interest analyses) and determined the impact of removing diffusion weighted images. Our findings from a large cohort of healthy controls indicate that while head motion was associated with a positive bias for both FA and MD, the effect was greater for MD. The positive bias was observed across all three analysis pipelines and was present following established protocols for data processing, suggesting that current techniques (i.e., correction of both image and gradient table) for removing motion bias are likely insufficient. However, the removal of images with gross artifacts did not fundamentally change the relationship between motion and DTI scalar values. In addition, Monte Carlo simulations suggested that the random removal of images increases the bias and reduces the precision of both FA and MD. Finally, we provide an example of how head motion can be quantified across different neuropsychiatric populations, which should be implemented as part of any diffusion tensor imaging quality assurance protocol. Hum Brain Mapp, 2012. (C) 2011 Wiley Periodicals, Inc.
引用
收藏
页码:50 / 62
页数:13
相关论文
共 52 条
[1]   Single-step Nonlinear diffusion tensor estimation in the presence of microscopic and macroscopic motion [J].
Aksoy, Murat ;
Liu, Chunlei ;
Moseley, Michael E. ;
Bammer, Roland .
MAGNETIC RESONANCE IN MEDICINE, 2008, 59 (05) :1138-1150
[2]   A model-based method for retrospective correction of geometric distortions in diffusion-weighted EPI [J].
Andersson, JLR ;
Skare, S .
NEUROIMAGE, 2002, 16 (01) :177-199
[3]  
Ardekani BA, 2010, HUM BRAIN M IN PRESS
[4]   Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: A pilot study [J].
Bazarian, Jeffrey J. ;
Zhong, Jianhui ;
Blyth, Brian ;
Zhu, Tong ;
Kavcic, Voyko ;
Peterson, Derick .
JOURNAL OF NEUROTRAUMA, 2007, 24 (09) :1447-1459
[5]   The basis of anisotropic water diffusion in the nervous system - a technical review [J].
Beaulieu, C .
NMR IN BIOMEDICINE, 2002, 15 (7-8) :435-455
[6]   Statistical methods of estimation and inference for functional MR image analysis [J].
Bullmore, E ;
Brammer, M ;
Williams, SCR ;
Rabehesketh, S ;
Janot, N ;
David, A ;
Mellers, J ;
Howard, R ;
Sham, P .
MAGNETIC RESONANCE IN MEDICINE, 1996, 35 (02) :261-277
[7]  
Bullmore ET, 1999, HUM BRAIN MAPP, V7, P38, DOI 10.1002/(SICI)1097-0193(1999)7:1<38::AID-HBM4>3.3.CO
[8]  
2-H
[9]   RESTORE: Robust estimation of tensors by outlier rejection [J].
Chang, LC ;
Jones, DK ;
Pierpaoli, C .
MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (05) :1088-1095
[10]   Optimal acquisition orders of diffusion-weighted MRI measurements [J].
Cook, Philip A. ;
Symms, Mark ;
Boulby, Philip A. ;
Alexander, Daniel C. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2007, 25 (05) :1051-1058