Weighted norm inequalities for Schrodinger type operators

被引:59
作者
Tang, Lin [1 ]
机构
[1] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
关键词
Weight function; Schrodinger operator; COMMUTATORS;
D O I
10.1515/forum-2013-0070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L = -Delta + V be a Schrodinger operator, where Delta is the Laplacian operator on R-n, while the nonnegative potential V belongs to the reverse Holder class. In this paper, we establish the weighted norm inequalities for some Schrodinger type operators, which include Riesz transforms and fractional integrals and their commutators. These results generalize substantially some well-known results.
引用
收藏
页码:2491 / 2532
页数:42
相关论文
共 23 条
[1]   Lerner's inequality associated to a critical radius function and applications [J].
Bongioanni, B. ;
Cabral, A. ;
Harboure, E. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (01) :35-55
[2]   Weighted inequalities for commutators of Schrodinger-Riesz transforms [J].
Bongioanni, B. ;
Harboure, E. ;
Salinas, O. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 392 (01) :6-22
[3]   Classes of weights related to Schrodinger operators [J].
Bongioanni, B. ;
Harboure, E. ;
Salinas, O. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) :563-579
[4]   Commutators of Riesz Transforms Related to Schrodinger Operators [J].
Bongioanni, B. ;
Harboure, E. ;
Salinas, O. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (01) :115-134
[5]   Weighted endpoint estimates for commutators of fractional integrals [J].
Cruz-Uribe, D. ;
Fiorenza, Hartford A. .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2007, 57 (01) :153-160
[6]   Endpoint estimates and weighted norm inequalities for commutators of fractional integrals [J].
Cruz-Uribe, D ;
Fiorenza, A .
PUBLICACIONS MATEMATIQUES, 2003, 47 (01) :103-131
[7]  
CRUZURIBE D, 2000, GEORGIAN MATH J, V7, P33, DOI DOI 10.1515/GMJ.2000.33
[8]   Weak estimates for commutators of fractional integral operators [J].
Ding, Y ;
Lu, SZ ;
Zhang, P .
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 (07) :877-888
[9]   BMO spaces related to Schrodinger operators with potentials satisfying a reverse Holder inequality [J].
Dziubanski, J ;
Garrigós, G ;
Martínez, T ;
Torrea, JL ;
Zienkiewicz, J .
MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (02) :329-356
[10]  
Dziubanski J, 1999, REV MAT IBEROAM, V15, P279