Artificial Intelligence in Cardiovascular Atherosclerosis Imaging

被引:17
作者
Zhang, Jia [1 ]
Han, Ruijuan [2 ]
Shao, Guo [3 ]
Lv, Bin [4 ]
Sun, Kai [3 ]
机构
[1] Hohhot Hlth Comm, Hohhot 010000, Peoples R China
[2] Peoples Hosp Longgang Dist, Shenzhen 518172, Peoples R China
[3] Third Peoples Hosp Longgang Dist, Shenzhen 518100, Peoples R China
[4] Fuwai Hosp, Natl Ctr Cardiovasc Dis, Beijing 100037, Peoples R China
关键词
artificial intelligence; atherosclerosis; plaque characterization; CORONARY-ARTERY-DISEASE; OPTICAL COHERENCE TOMOGRAPHY; FRACTIONAL FLOW RESERVE; WALL SHEAR-STRESS; HIGH-RISK; AUTOMATIC CLASSIFICATION; PLAQUE CHARACTERIZATION; VULNERABLE PLAQUE; ANGIOGRAPHY; ULTRASOUND;
D O I
10.3390/jpm12030420
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
At present, artificial intelligence (AI) has already been applied in cardiovascular imaging (e.g., image segmentation, automated measurements, and eventually, automated diagnosis) and it has been propelled to the forefront of cardiovascular medical imaging research. In this review, we presented the current status of artificial intelligence applied to image analysis of coronary atherosclerotic plaques, covering multiple areas from plaque component analysis (e.g., identification of plaque properties, identification of vulnerable plaque, detection of myocardial function, and risk prediction) to risk prediction. Additionally, we discuss the current evidence, strengths, limitations, and future directions for AI in cardiac imaging of atherosclerotic plaques, as well as lessons that can be learned from other areas. The continuous development of computer science and technology may further promote the development of this field.
引用
收藏
页数:14
相关论文
共 78 条
[31]   Radiomics versus Visual and Histogram-based Assessment to Identify Atheromatous Lesions at Coronary CT Angiography: An ex Vivo Study [J].
Kolossvary, Marton ;
Karady, Julia ;
Kikuchi, Yasuka ;
Ivanov, Alexander ;
Schlett, Christopher L. ;
Lu, Michael T. ;
Foldyna, Borek ;
Merkely, Bela ;
Aerts, Hugo J. ;
Hoffmann, Udo ;
Maurovich-Horvat, Pal .
RADIOLOGY, 2019, 293 (01) :89-96
[32]   Identification of invasive and radionuclide imaging markers of coronary plaque vulnerability using radiomic analysis of coronary computed tomography angiography [J].
Kolossvary, Marton ;
Park, Jonghanne ;
Bang, Ji-In ;
Zhang, Jinlong ;
Lee, Joo Myung ;
Paeng, Jin Chul ;
Merkely, Bela ;
Narula, Jagat ;
Kubo, Takashi ;
Akasaka, Takashi ;
Koo, Bon-Kwon ;
Maurovich-Horvat, Pal .
EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2019, 20 (11) :1250-1258
[33]   Radiomic Features Are Superior to Conventional Quantitative Computed Tomographic Metrics to Identify Coronary Plaques With Napkin-Ring Sign [J].
Kolossvary, Marton ;
Karady, Julia ;
Szilveszter, Balint ;
Kitslaar, Pieter ;
Hoffmann, Udo ;
Merkely, Bela ;
Maurovich-Horvat, Pal .
CIRCULATION-CARDIOVASCULAR IMAGING, 2017, 10 (12)
[34]  
Kriszbacher I, 2005, NEW ENGL J MED, V353, P429
[35]   Identification of High-Risk Plaques Destined to Cause Acute Coronary Syndrome Using Coronary Computed Tomographic Angiography and Computational Fluid Dynamics [J].
Lee, Joo Myung ;
Choi, Gilwoo ;
Koo, Bon-Kwon ;
Hwang, Doyeon ;
Park, Jonghanne ;
Zhang, Jinlong ;
Kim, Kyung-Jin ;
Tong, Yaliang ;
Kim, Hyun Jin ;
Grady, Leo ;
Doh, Joon-Hyung ;
Nam, Chang-Wook ;
Shin, Eun-Seok ;
Cho, Young-Seok ;
Choi, Su-Yeon ;
Chun, Eun Ju ;
Choi, Jin-Ho ;
Norgaard, Bjarne L. ;
Christiansen, Evald H. ;
Niemen, Koen ;
Otake, Hiromasa ;
Penicka, Martin ;
de Bruyne, Bernard ;
Kubo, Takashi ;
Akasaka, Takashi ;
Narula, Jagat ;
Douglas, Pamela S. ;
Taylor, Charles A. ;
Kim, Hyo-Soo .
JACC-CARDIOVASCULAR IMAGING, 2019, 12 (06) :1032-1043
[36]   Automated plaque characterization using deep learning on coronary intravascular optical coherence tomographic images [J].
Lee, Juhwan ;
Prabhu, David ;
Kolluru, Chaitanya ;
Gharaibeh, Yazan ;
Zimin, Vladislav N. ;
Bezerra, Hiram G. ;
Wilson, David L. .
BIOMEDICAL OPTICS EXPRESS, 2019, 10 (12) :6497-6515
[37]   Progress and challenges in translating the biology of atherosclerosis [J].
Libby, Peter ;
Ridker, Paul M. ;
Hansson, Goran K. .
NATURE, 2011, 473 (7347) :317-325
[38]   Automated Detection of Vulnerable Plaque for Intravascular Optical Coherence Tomography Images [J].
Liu, Ran ;
Zhang, Yanzhen ;
Zheng, Yangting ;
Liu, Yaqiong ;
Zhao, Yang ;
Yi, Lin .
CARDIOVASCULAR ENGINEERING AND TECHNOLOGY, 2019, 10 (04) :590-603
[39]   Cancer statistics: a comparison between World Health Organization (WHO) and Global Burden of Disease (GBD) [J].
Mattiuzzi, Camilla ;
Lippi, Giuseppe .
EUROPEAN JOURNAL OF PUBLIC HEALTH, 2020, 30 (05) :1026-1027
[40]   Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis [J].
Motwani, Manish ;
Dey, Damini ;
Berman, Daniel S. ;
Germano, Guido ;
Achenbach, Stephan ;
Al-Mallah, Mouaz H. ;
Andreini, Daniele ;
Budoff, Matthew J. ;
Cademartiri, Filippo ;
Callister, Tracy Q. ;
Chang, Hyuk-Jae ;
Chinnaiyan, Kavitha ;
Chow, Benjamin J. W. ;
Cury, Ricardo C. ;
Delago, Augustin ;
Gomez, Millie ;
Gransar, Heidi ;
Hadamitzky, Martin ;
Hausleiter, Joerg ;
Hindoyan, Niree ;
Feuchtner, Gudrun ;
Kaufmann, Philipp A. ;
Kim, Yong-Jin ;
Leipsic, Jonathon ;
Lin, Fay Y. ;
Maffei, Erica ;
Marques, Hugo ;
Pontone, Gianluca ;
Raff, Gilbert ;
Rubinshtein, Ronen ;
Shaw, Leslee J. ;
Stehli, Julia ;
Villines, Todd C. ;
Dunning, Allison ;
Min, James K. ;
Slomka, Piotr J. .
EUROPEAN HEART JOURNAL, 2017, 38 (07) :500-507