Counting subset sums of finite abelian groups

被引:25
作者
Li, Jiyou [1 ]
Wan, Daqing [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200030, Peoples R China
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
Subset sums; Sieve; Finite abelian groups; Ramanujan's; trigonometrical sum;
D O I
10.1016/j.jcta.2011.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain an explicit formula for the number of zero-sum k-element subsets in any finite abelian group. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:170 / 182
页数:13
相关论文
共 10 条
[1]  
[Anonymous], 1997, Enumerative combinatorics
[2]  
CHENG Q, 2007, LECT NOTES COMPUT SC, V4484
[3]   Hard problems of algebraic geometry codes [J].
Cheng, Qi .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (01) :402-406
[4]  
Cormen T., 2001, Introduction to Algorithms
[5]  
Graham Ronald L., 1994, Concrete Mathematics: A Foundation For Computer Science, V2nd
[6]   On the subset sum problem over finite fields [J].
Li, Jiyou ;
Wan, Daqing .
FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (04) :911-929
[7]   A new sieve for distinct coordinate counting [J].
Li JiYou ;
Wan DaQing .
SCIENCE CHINA-MATHEMATICS, 2010, 53 (09) :2351-2362
[8]   LINEAR CONGRUENCES AND THE VONSTERNECK FUNCTION [J].
NICOL, CA .
DUKE MATHEMATICAL JOURNAL, 1959, 26 (02) :193-197
[9]   ENUMERATION OF POWER SUMS MODULO-A PRIME [J].
ODLYZKO, AM ;
STANLEY, RP .
JOURNAL OF NUMBER THEORY, 1978, 10 (02) :263-272
[10]  
RAMANATHAN KG, 1945, P INDIAN ACAD SCI, V20, P62