JUWELS Booster - A Supercomputer for Large-Scale AI Research

被引:3
作者
Kesselheim, Stefan [1 ]
Herten, Andreas [1 ]
Krajsek, Kai [1 ]
Ebert, Jan [1 ]
Jitsev, Jenia [1 ]
Cherti, Mehdi [1 ]
Langguth, Michael [1 ]
Gong, Bing [1 ]
Stadtler, Scarlet [1 ]
Mozaffari, Amirpasha [1 ]
Cavallaro, Gabriele [1 ]
Sedona, Rocco [1 ,2 ]
Schug, Alexander [1 ,3 ]
Strube, Alexandre [1 ]
Kamath, Roshni [1 ]
Schultz, Martin G. [1 ]
Riedel, Morris [1 ,2 ]
Lippert, Thomas [1 ]
机构
[1] Forschungszentrum Julich, Julich Supercomp Ctr, Julich, Germany
[2] Univ Iceland, Sch Engn & Nat Sci, Reykjavik, Iceland
[3] Univ Duisburg Essen, Duisburg, Germany
来源
HIGH PERFORMANCE COMPUTING - ISC HIGH PERFORMANCE DIGITAL 2021 INTERNATIONAL WORKSHOPS | 2021年 / 12761卷
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Artificial Intelligence; Deep learning; GPU; High-performance computing; Machine learning; Mich supercomputing centre; DIRECT-COUPLING ANALYSIS; RNA; IDENTIFICATION;
D O I
10.1007/978-3-030-90539-2_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this article, we present JUWELS Booster, a recently commissioned high-performance computing system at the Julich Supercomputing Center. With its system architecture, most importantly its large number of powerful Graphics Processing Units (GPUs) and its fast interconnect via InfiniBand, it is an ideal machine for large-scale Artificial Intelligence (AI) research and applications. We detail its system architecture, parallel, distributed model training, and benchmarks indicating its outstanding performance. We exemplify its potential for research application by presenting large-scale AI research highlights from various scientific fields that require such a facility.
引用
收藏
页码:453 / 468
页数:16
相关论文
共 69 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] Agarwal S., ABS210300543 ARXIV
  • [3] Amodei D., 2018, OpenAI Blog
  • [4] The quiet revolution of numerical weather prediction
    Bauer, Peter
    Thorpe, Alan
    Brunet, Gilbert
    [J]. NATURE, 2015, 525 (7567) : 47 - 55
  • [5] Reconciling modern machine-learning practice and the classical bias-variance trade-off
    Belkin, Mikhail
    Hsu, Daniel
    Ma, Siyuan
    Mandal, Soumik
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (32) : 15849 - 15854
  • [6] IMPLEMENTING REMOTE PROCEDURE CALLS
    BIRRELL, AD
    NELSON, BJ
    [J]. ACM TRANSACTIONS ON COMPUTER SYSTEMS, 1984, 2 (01): : 39 - 59
  • [7] Brown Tom, 2020, ADV NEURAL INFORM PR
  • [8] Canty MJ, 2014, IMAGE ANALYSIS, CLASSIFICATION AND CHANGE DETECTION IN REMOTE SENSING: WITH ALGORITHMS FOR ENVI/IDL AND PYTHON, 3RD EDITION, P1, DOI 10.1201/b17074
  • [9] Chen Tianlong, 2020, ARXIV PREPRINT ARXIV
  • [10] Cherti M., ARXIV PREPRINT ARXIV