An eigenvalue localization theorem for pentadiagonal symmetric Toeplitz matrices

被引:18
作者
Elouafi, Mohamed [1 ]
机构
[1] Preparatory Classes High Sch Engn, Tangier, Morocco
关键词
Toeplitz matrix; Determinant; Eigenvalue; Chebyshev polynomial;
D O I
10.1016/j.laa.2011.05.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We express the eigenvalues of a pentadiagonal symmetric Toeplitz matrix as the zeros of explicitly given rational functions. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2986 / 2998
页数:13
相关论文
共 50 条
[41]   The Inverse Eigenvalue Problem for Symmetric Doubly Arrow Matrices [J].
Wang, Kanming ;
Liu, Zhibing ;
Fei, Xuyun .
ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2, 2014, 444-445 :625-627
[42]   An Inverse Eigenvalue Problem for Symmetric Doubly Arrow Matrices [J].
Xu, Chengfeng ;
Liu, Zhibing ;
Wang, Kanming .
2010 INTERNATIONAL CONFERENCE ON INFORMATION, ELECTRONIC AND COMPUTER SCIENCE, VOLS 1-3, 2010, :629-632
[43]   A NUMERICAL ALGORITHM FOR COMPUTING THE INVERSE OF A TOEPLITZ PENTADIAGONAL MATRIX [J].
Talibi, Boutaina ;
Aiat Hadj, Ahmed Driss ;
Sarsri, Driss .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2018, 17 (03) :83-95
[44]   Characteristic Polynomials and Eigenvalues for Certain Classes of Pentadiagonal Matrices [J].
Alejandra Alvarez, Maria ;
Brondani, Andre Ebling ;
Macedo Franca, Francisca Andrea ;
Medina, Luis A. C. .
MATHEMATICS, 2020, 8 (07)
[45]   Some determinantal considerations for pentadiagonal matrices [J].
Andelic, Milica ;
da Fonseca, Carlos M. .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (16) :3121-3129
[46]   A projection method for computing the minimum eigenvalue of a symmetric positive definite Toeplitz matrix [J].
Mackens, W ;
Voss, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 276 :401-415
[47]   Preconditioned Lanczos methods for the minimum eigenvalue of a symmetric positive definite Toeplitz matrix [J].
Ng, MK .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06) :1973-1986
[48]   Centro-symmetric and centro-skewsymmetric Toeplitz matrices and Bezoutians [J].
Heinig, G ;
Rost, K .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 343 :195-209
[49]   Toeplitz matrices with an exponential growth of entries and the first Szego limit theorem [J].
Sakhnovich, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 171 (02) :449-482