Parametric autoresonant excitation of the nonlinear Schrodinger equation

被引:5
|
作者
Friedland, L. [1 ]
Shagalov, A. G. [2 ,3 ]
机构
[1] Hebrew Univ Jerusalem, Racah Inst Phys, IL-91904 Jerusalem, Israel
[2] Inst Met Phys, Ekaterinburg 620990, Russia
[3] Ural Fed Univ, Mira 19, Ekaterinburg 620002, Russia
基金
以色列科学基金会;
关键词
SOLITONS; WAVE;
D O I
10.1103/PhysRevE.94.042216
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Parametric excitation of autoresonant solutions of the nonlinear Schrodinger (NLS) equation by a chirped frequency traveling wave is discussed. Fully nonlinear theory of the process is developed based on Whitham's averaged variational principle and its predictions verified in numerical simulations. The weakly nonlinear limit of the theory is used to find the threshold on the amplitude of the driving wave for entering the autoresonant regime. It is shown that above the threshold, a flat (spatially independent) NLS solution can be fully converted into a traveling wave. A simplified, few spatial harmonics expansion approach is also developed for studying this nonlinear mode conversion process, allowing interpretation as autoresonant interaction within triads of spatial harmonics.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Study on a new nonlinear parametric excitation equation: Stability and bifurcation
    Chen Si-yu
    Tang Jin-yuan
    JOURNAL OF SOUND AND VIBRATION, 2008, 318 (4-5) : 1109 - 1118
  • [22] Autoresonant excitation and control of nonlinear mode for ultrasonically assisted drilling
    Li, Xuan
    Babitsky, Vladimir
    Parkin, Robert
    Meadows, Alan
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2014, 94 (11): : 904 - 910
  • [23] NONLINEAR SCHRODINGER EQUATION
    BAILLON, JB
    CAZENAVE, T
    FIGUEIRA, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (15): : 869 - 872
  • [24] NONLINEAR SCHRODINGER EQUATION
    BIROLI, M
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1973, 54 (06): : 854 - 859
  • [25] Role of parametric gain operator for the higher-order nonlinear Schrodinger equation
    Gui, Mingxiang
    Huang, Ling
    OPTIK, 2018, 158 : 78 - 83
  • [26] Nonlinear Schrodinger-Helmholtz equation as numerical regularization of the nonlinear Schrodinger equation
    Cao, Yanping
    Musslimani, Ziad H.
    Titi, Edriss S.
    NONLINEARITY, 2008, 21 (05) : 879 - 898
  • [27] PARAMETRIC FORCING, BOUND-STATES AND SOLUTIONS OF A NONLINEAR SCHRODINGER TYPE EQUATION
    ABLOWITZ, MJ
    DELILLO, S
    NONLINEARITY, 1994, 7 (04) : 1143 - 1153
  • [28] Autoresonant (nonstationary) excitation of pendulums, Plutinos, plasmas, and other nonlinear oscillators
    Fajans, J
    Frièdland, L
    AMERICAN JOURNAL OF PHYSICS, 2001, 69 (10) : 1096 - 1102
  • [29] Exact solutions to nonlinear Schrodinger equation and higher-order nonlinear Schrodinger equation
    Ren Ji
    Ruan Hang-Yu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (03) : 575 - 578
  • [30] Autoresonant Excitation of Antiproton Plasmas
    Andresen, G. B.
    Ashkezari, M. D.
    Baquero-Ruiz, M.
    Bertsche, W.
    Bowe, P. D.
    Butler, E.
    Carpenter, P. T.
    Cesar, C. L.
    Chapman, S.
    Charlton, M.
    Fajans, J.
    Friesen, T.
    Fujiwara, M. C.
    Gill, D. R.
    Hangst, J. S.
    Hardy, W. N.
    Hayden, M. E.
    Humphries, A. J.
    Hurt, J. L.
    Hydomako, R.
    Jonsell, S.
    Madsen, N.
    Menary, S.
    Nolan, P.
    Olchanski, K.
    Olin, A.
    Povilus, A.
    Pusa, P.
    Robicheaux, F.
    Sarid, E.
    Silveira, D. M.
    So, C.
    Storey, J. W.
    Thompson, R. I.
    van der Werf, D. P.
    Wurtele, J. S.
    Yamazaki, Y.
    PHYSICAL REVIEW LETTERS, 2011, 106 (02)