New entropic bounds on time scales via Hermite interpolating polynomial

被引:5
作者
Ansari, Iqrar [1 ,2 ]
Khan, Khuram Ali [1 ]
Nosheen, Ammara [1 ]
Pecaric, Dilda [3 ]
Pecaric, Josip [4 ]
机构
[1] Univ Sargodha, Dept Math, Sargodha, Pakistan
[2] Govt Mian Muhammad Nawaz Sharif Associate Coll Sa, Sargodha, Pakistan
[3] Univ North, Dept Media & Commun, Trg Dr Zarka Dolinara 1, Koprivnica, Croatia
[4] RUDN Univ, Miklukho Maklaya Str 6, Moscow 117198, Russia
关键词
Hermite interpolating polynomial; Time scales calculus; Quantum calculus; Information theory; INTEGRAL-INEQUALITIES; F-DIVERGENCE; INFORMATION; SHANNON;
D O I
10.1186/s13660-021-02730-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hermite's interpolation is utilized to establish a new generalization of an inequality for higher order convex functions containing Csiszar divergence on time scales. New entropic bounds in q-calculus and h-discrete calculus are also deduced. Some estimates for Zipf-Mandelbrot entropy are also given.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] New bounds for q-midpoint-type inequalities via twice q-differentiable functions on quantum calculus
    Alp, Necmettin
    Budak, Huseyin
    Erden, Samet
    Sarikaya, Mehmet Zeki
    SOFT COMPUTING, 2022, 26 (19) : 10321 - 10329
  • [42] Some New Hermite-Hadamard and Related Inequalities for Convex Functions via (p,q)-Integral
    Vivas-Cortez, Miguel
    Ali, Muhammad Aamir
    Budak, Huseyin
    Kalsoom, Humaira
    Agarwal, Praveen
    ENTROPY, 2021, 23 (07)
  • [43] Some new integral inequalities on time scales containing integration on infinite intervals
    Zhaowei Meng
    Bin Zheng
    Chuanbao Wen
    Journal of Inequalities and Applications, 2013
  • [44] Some New Gronwall-Bellman-Type Inequalities on Time Scales and Their Applications
    Zheng, Bin
    Feng, Qinghua
    Meng, Fanwei
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [45] Some new integral inequalities on time scales containing integration on infinite intervals
    Meng, Zhaowei
    Zheng, Bin
    Wen, Chuanbao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [46] SOME NEW GENERALIZED FORMS OF HARDY'S TYPE INEQUALITY ON TIME SCALES
    Saker, S. H.
    Mahmoud, R. R.
    Osman, M. M.
    Agarwal, R. P.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (02): : 459 - 481
  • [47] NEW WEIGHTED OSTROWSKI AND OSTROWSKI-GRUSS TYPE INEQUALITIES ON TIME SCALES
    Liu, Wenjun
    Tuna, Adnan
    Jiang, Yong
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2014, 60 (01): : 57 - 76
  • [48] CHEBYSHEV-GRUSS TYPE INEQUALITIES ON TIME SCALES VIA TWO LINEAR ISOTONIC FUNCTIONALS
    Nikolova, Ludmila
    Varosanec, Sanja
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (04): : 1417 - 1427
  • [49] n-Convexity via Delta-Integral Representation of Divided Difference on Time Scales
    Baig, Hira Ashraf
    Ahmad, Naveed
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2022, 20
  • [50] A New Dynamic Scheme via Fractional Operators on Time Scale
    Rashid, Saima
    Noor, Muhammad Aslam
    Nisar, Kottakkaran Sooppy
    Baleanu, Dumitru
    Rahman, Gauhar
    FRONTIERS IN PHYSICS, 2020, 8