Performance Evaluation of High-Resolution Land Data Assimilation System (HRLDAS) Over Indian Region

被引:9
|
作者
Nayak, H. P. [1 ,2 ]
Sinha, Palash [2 ]
Satyanarayana, A. N. V. [1 ]
Bhattacharya, A. [1 ]
Mohanty, U. C. [2 ]
机构
[1] Indian Inst Technol Kharagpur, Ctr Oceans Rivers Atmosphere & Land Sci, Kharagpur, W Bengal, India
[2] Indian Inst Technol Bhubaneswar, Sch Earth Ocean & Climate Sci, 309 Basic Sci Bldg, Bhubaneswar 752050, Odisha, India
关键词
Land data assimilation; soil moisture; soil temperature; sensible heat flux; SOIL-MOISTURE; SURFACE INITIALIZATION; MESOSCALE MODEL; ETA-MODEL; IMPACT; TEMPERATURE; PARAMETERIZATION; PRECIPITATION; PREDICTION; SCHEMES;
D O I
10.1007/s00024-018-1946-2
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The present study evaluates the skill of a High-Resolution Land Data Assimilation System (HRLDAS) in simulating soil moisture (SM), soil temperature (ST) and sensible heat flux (SHF) for the Indian region (5 degrees-39 degrees N; 60 degrees-100 degrees E). The HRLDAS framework uses uncoupled Noah Land Surface Model (LSM) that integrates near-surface atmospheric parameters and land surface parameters from observations and analysis for the period January 2001-October 2013 at 20km spatial resolution. The HRLDAS takes about 1year to reach its quasi-equilibrium state for clay soil. The HRLDAS simulated ST and SM reasonably agree with the in situ observations.The simulated ST shows a negative bias in the monsoon season over the Gujarat, Mandla, and Kharagpur. The SM is under-estimated and the under-estimation increases with soil depth at Kharagpur, India. The negative bias in TRMM precipitation forcing causes under-estimation of SM. The simulated SM shown higher saturation point than observations. The daytime SHF has positive bias during the pre-monsoon, monsoon seasons and agrees well with observations in the post-monsoon season at Ranchi, India. The Noah 1D sensitivity experiments revealed that there is a need to revisit soil field capacity and porosity parameter for improving the skill of the HRLDAS.
引用
收藏
页码:389 / 407
页数:19
相关论文
共 50 条
  • [41] Performance Evaluation of the High-Resolution WRF Meteorological Simulation over the Seoul Metropolitan Area
    Oh, Jun-Seo
    Lee, Jae-Hyeong
    Woo, Ju-Wan
    Lee, Doo-Il
    Lee, Sang-Hyun
    Seo, Jihyun
    Moon, Nankyoung
    ATMOSPHERE-KOREA, 2020, 30 (03): : 257 - 276
  • [42] EVALUATION OF THE GLOBAL LAND DATA ASSIMILATION SYSTEM (GLDAS) DATA PRODUCTS ESSENTIAL FOR DETERMINATION GROUNDWATER IN POLAND
    Rzepecka, Zofia
    Birylo, Monika
    Nastula, Habil Jolanta
    WATER, RESOURCES, FOREST, MARINE AND OCEAN ECOSYSTEMS CONFERENCE PROCEEDINGS, VOL I, 2016, : 313 - 320
  • [43] Towards an Indian land data assimilation system (ILDAS): A coupled hydrologic-hydraulic system for water balance assessments
    Magotra, Bhanu
    Prakash, Ved
    Saharia, Manabendra
    Getirana, Augusto
    Kumar, Sujay
    Pradhan, Rohit
    Dhanya, C. T.
    Rajagopalan, Balaji
    Singh, Raghavendra P.
    Pandey, Ayush
    Mohapatra, Mrutyunjay
    JOURNAL OF HYDROLOGY, 2024, 629
  • [44] Evaluation of SMAP/Sentinel 1 High-Resolution Soil Moisture Data to Detect Irrigation Over Agricultural Domain
    Jalilvand, Ehsan
    Abolafia-Rosenzweig, Ronnie
    Tajrishy, Masoud
    Das, Narendra N.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 10733 - 10747
  • [45] A high-resolution climate experiment over part of Vietnam and the Lower Mekong Basin: performance evaluation and projection for rainfall
    Huy Hoang-Cong
    Thanh Ngo-Duc
    Tuyet Nguyen-Thi
    Long Trinh-Tuan
    Chung, Jing Xiang
    Tangang, Fredolin
    Santisirisomboon, Jerasorn
    Tan Phan-Van
    VIETNAM JOURNAL OF EARTH SCIENCES, 2022, 44 (01): : 92 - 108
  • [46] IMPROVING LAND SURFACE ENERGY AND WATER FLUXES SIMULATION OVER THE TIBETAN PLATEAU WITH USING A LAND DATA ASSIMILATION SYSTEM
    Lu, Hui
    Koike, Toshio
    Yang, Kun
    Li, Xin
    Tsutsui, Hiroyuki
    Tamagawa, Katsunori
    Xu, Xiangde
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1207 - 1210
  • [47] Development of high spatial resolution weather data using daily meteorological observations over Indian region
    Nagori, Rohit
    Chaudhari, K. N.
    MAUSAM, 2020, 71 (04): : 605 - 616
  • [48] Subduction over the Southern Indian Ocean in a High-Resolution Atmosphere-Ocean Coupled Model
    Lee, Mei-Man
    Nurser, A. J. George
    Stevens, I.
    Sallee, Jean-Baptiste
    JOURNAL OF CLIMATE, 2011, 24 (15) : 3830 - 3849
  • [49] A high-resolution Asia-Pacific regional coupled prediction system with dynamically downscaling coupled data assimilation
    Li, Mingkui
    Zhang, Shaoqing
    Wu, Lixin
    Lin, Xiaopei
    Chang, Ping
    Danabasoglu, Gohkan
    Wei, Zhiqiang
    Yu, Xiaolin
    Hu, Huiqin
    Ma, Xiaohui
    Ma, Weiwei
    Jia, Dongning
    Liu, Xin
    Zhao, Haoran
    Mao, Kai
    Ma, Youwei
    Jiang, Yingjing
    Wang, Xue
    Liu, Guangliang
    Chen, Yuhu
    SCIENCE BULLETIN, 2020, 65 (21) : 1849 - 1858
  • [50] Impact of INSAT-3D land surface temperature assimilation via simplified extended Kalman filter-based land data assimilation system on forecasting of surface fields over India
    Lodh, Abhishek
    Routray, Ashish
    Dutta, Devajyoti
    Singh, Vivek
    George, John. P.
    METEOROLOGICAL APPLICATIONS, 2024, 31 (06)