UFold: fast and accurate RNA secondary structure prediction with deep learning

被引:113
作者
Fu, Laiyi [1 ,2 ]
Cao, Yingxin [2 ,5 ,6 ]
Wu, Jie [3 ]
Peng, Qinke [1 ]
Nie, Qing [4 ,5 ,6 ]
Xie, Xiaohui [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Elect & Informat Engn, Syst Engn Inst, Xian 710049, Shaanxi, Peoples R China
[2] Univ Calif Irvine, Dept Comp Sci, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Biol Chem, Irvine, CA 92697 USA
[4] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[5] Univ Calif Irvine, Ctr Complex Biol Syst, Irvine, CA 92697 USA
[6] Univ Calif Irvine, NSF Simons Ctr Multiscale Cell Fate Res, Irvine, CA 92697 USA
关键词
WEB SERVER; PROTEIN; DESIGN;
D O I
10.1093/nar/gkab1074
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
For many RNA molecules, the secondary structure is essential for the correct function of the RNA. Predicting RNA secondary structure from nucleotide sequences is a long-standing problem in genomics, but the prediction performance has reached a plateau over time. Traditional RNA secondary structure prediction algorithms are primarily based on thermodynamic models through free energy minimization, which imposes strong prior assumptions and is slow to run. Here, we propose a deep learning-based method, called UFold, for RNA secondary structure prediction, trained directly on annotated data and base-pairing rules. UFold proposes a novel image-like representation of RNA sequences, which can be efficiently processed by Fully Convolutional Networks (FCNs). We benchmark the performance of UFold on both within- and cross-family RNA datasets. It significantly outperforms previous methods on within-family datasets, while achieving a similar performance as the traditional methods when trained and tested on distinct RNA families. UFold is also able to predict pseudoknots accurately. Its prediction is fast with an inference time of about 160 ms per sequence up to 1500 bp in length. An online web server running UFold is available at . Code is available at .
引用
收藏
页数:12
相关论文
共 62 条
[21]   RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts [J].
Geisler, Sarah ;
Coller, Jeff .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2013, 14 (11) :699-712
[22]  
Havgaard JH, 2014, METHODS MOL BIOL, V1097, P275, DOI 10.1007/978-1-62703-709-9_13
[23]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[24]   LinearFold: linear-time approximate RNA folding by 5'-to-3' dynamic programming and beam search [J].
Huang, Liang ;
Zhang, He ;
Deng, Dezhong ;
Zhao, Kai ;
Liu, Kaibo ;
Hendrix, David A. ;
Mathews, David H. .
BIOINFORMATICS, 2019, 35 (14) :I295-I304
[25]   Rfam 14: expanded coverage of metagenomic, viral and microRNA families [J].
Kalvari, Ioanna ;
Nawrocki, Eric P. ;
Ontiveros-Palacios, Nancy ;
Argasinska, Joanna ;
Lamkiewicz, Kevin ;
Marz, Manja ;
Griffiths-Jones, Sam ;
Toffano-Nioche, Claire ;
Gautheret, Daniel ;
Weinberg, Zasha ;
Rivas, Elena ;
Eddy, Sean R. ;
Finn, Robert D. ;
Bateman, Alex ;
Petrov, Anton, I .
NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) :D192-D200
[26]   Rfold: an exact algorithm for computing local base pairing probabilities [J].
Kiryu, Hisanori ;
Kin, Taishin ;
Asai, Kiyoshi .
BIOINFORMATICS, 2008, 24 (03) :367-373
[27]  
KNAPP G, 1989, METHOD ENZYMOL, V180, P192
[28]   Global or local? Predicting secondary structure and accessibility in mRNAs [J].
Lange, Sita J. ;
Maticzka, Daniel ;
Moehl, Mathias ;
Gagnon, Joshua N. ;
Brown, Chris M. ;
Backofen, Rolf .
NUCLEIC ACIDS RESEARCH, 2012, 40 (12) :5215-5226
[29]   Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences [J].
Li, Weizhong ;
Godzik, Adam .
BIOINFORMATICS, 2006, 22 (13) :1658-1659
[30]   ViennaRNA Package 2.0 [J].
Lorenz, Ronny ;
Bernhart, Stephan H. ;
Siederdissen, Christian Hoener Zu ;
Tafer, Hakim ;
Flamm, Christoph ;
Stadler, Peter F. ;
Hofacker, Ivo L. .
ALGORITHMS FOR MOLECULAR BIOLOGY, 2011, 6