Flow-based sampling for fermionic lattice field theories

被引:28
作者
Albergo, Michael S. [1 ]
Kanwar, Gurtej [2 ,3 ]
Racaniere, Sebastien [4 ]
Rezende, Danilo J. [4 ]
Urban, Julian M. [5 ]
Boyda, Denis [2 ,3 ,6 ]
Cranmer, Kyle [1 ]
Hackett, Daniel C. [2 ,3 ]
Shanahan, Phiala E. [2 ,3 ]
机构
[1] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA
[2] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[3] NSF AI Inst Artificial Intelligence & Fundamental, Cambridge, MA 02139 USA
[4] DeepMind, London N1C 4DJ, England
[5] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
[6] Argonne Natl Lab, Argonne Leadership Comp Facil, Lemont, IL 60439 USA
基金
美国国家科学基金会;
关键词
MONTE-CARLO-SIMULATION; DENSITY-ESTIMATION; HMC ALGORITHM; QCD; INTEGRATION; DYNAMICS; MATRIX; QUARK; TRACE;
D O I
10.1103/PhysRevD.104.114507
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Algorithms based on normalizing flows are emerging as promising machine learning approaches to sampling complicated probability distributions in a way that can be made asymptotically exact. In the context of lattice field theory, proof-of-principle studies have demonstrated the effectiveness of this approach for scalar theories, gauge theories, and statistical systems. This work develops approaches that enable flow-based sampling of theories with dynamical fermions, which is necessary for the technique to be applied to lattice field theory studies of the Standard Model of particle physics and many condensed matter systems. As a practical demonstration, these methods are applied to the sampling of field configurations for a two-dimensional theory of massless staggered fermions coupled to a scalar field via a Yukawa interaction.
引用
收藏
页数:25
相关论文
共 123 条
[11]   A NEW METHOD FOR FERMION MONTE-CARLO [J].
BHANOT, G ;
HELLER, UM ;
STAMATESCU, IO .
PHYSICS LETTERS B, 1983, 129 (06) :440-444
[12]   MERON-CLUSTER SIMULATION OF THE THETA-VACUUM IN THE 2D O(3) MODEL [J].
BIETENHOLZ, W ;
POCHINSKY, A ;
WIESE, UJ .
PHYSICAL REVIEW LETTERS, 1995, 75 (24) :4524-4527
[13]   Sampling using SU(N) gauge equivariant flows [J].
Boyda, Denis ;
Kanwar, Gurtej ;
Racaniere, Sebastien ;
Rezende, Danilo Jimenez ;
Albergo, Michael S. ;
Cranmer, Kyle ;
Hackett, Daniel C. ;
Shanahan, Phiala E. .
PHYSICAL REVIEW D, 2021, 103 (07)
[14]   EMBEDDED DYNAMICS FOR PHI-4 THEORY [J].
BROWER, RC ;
TAMAYO, P .
PHYSICAL REVIEW LETTERS, 1989, 62 (10) :1087-1090
[15]   Lattice gauge theory for physics beyond the Standard Model [J].
Brower, Richard C. ;
Hasenfratz, Anna ;
Neil, Ethan T. ;
Catterall, Simon ;
Fleming, George ;
Giedt, Joel ;
Rinaldi, Enrico ;
Schaich, David ;
Weinberg, Evan ;
Witzel, Oliver .
EUROPEAN PHYSICAL JOURNAL A, 2019, 55 (11)
[16]   Generalization capabilities of translationally equivariant neural networks [J].
Bulusu, Srinath ;
Favoni, Matteo ;
Ipp, Andreas ;
Mueller, David, I ;
Schuh, Daniel .
PHYSICAL REVIEW D, 2021, 104 (07)
[17]   Machine learning for quantum matter [J].
Carrasquilla, Juan .
ADVANCES IN PHYSICS-X, 2020, 5 (01)
[18]   Symmetry-enforced self-learning Monte Carlo method applied to the Holstein model [J].
Chen, Chuang ;
Xu, Xiao Yan ;
Liu, Junwei ;
Batrouni, George ;
Scalettar, Richard ;
Meng, Zi Yang .
PHYSICAL REVIEW B, 2018, 98 (04)
[19]   Exact pseudofermion action for Monte Carlo simulation of domain-wall fermion [J].
Chen, Yu-Chih ;
Chiu, Ting-Wai .
PHYSICS LETTERS B, 2014, 738 :55-60
[20]   The role of Lattice QCD in searches for violations of fundamental symmetries and signals for new physics [J].
Cirigliano, Vincenzo ;
Davoudi, Zohreh ;
Bhattacharya, Tanmoy ;
Izubuchi, Taku ;
Shanahan, Phiala E. ;
Syritsyn, Sergey ;
Wagman, Michael L. .
EUROPEAN PHYSICAL JOURNAL A, 2019, 55 (11)