Flow-based sampling for fermionic lattice field theories

被引:28
作者
Albergo, Michael S. [1 ]
Kanwar, Gurtej [2 ,3 ]
Racaniere, Sebastien [4 ]
Rezende, Danilo J. [4 ]
Urban, Julian M. [5 ]
Boyda, Denis [2 ,3 ,6 ]
Cranmer, Kyle [1 ]
Hackett, Daniel C. [2 ,3 ]
Shanahan, Phiala E. [2 ,3 ]
机构
[1] NYU, Ctr Cosmol & Particle Phys, New York, NY 10003 USA
[2] MIT, Ctr Theoret Phys, Cambridge, MA 02139 USA
[3] NSF AI Inst Artificial Intelligence & Fundamental, Cambridge, MA 02139 USA
[4] DeepMind, London N1C 4DJ, England
[5] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
[6] Argonne Natl Lab, Argonne Leadership Comp Facil, Lemont, IL 60439 USA
基金
美国国家科学基金会;
关键词
MONTE-CARLO-SIMULATION; DENSITY-ESTIMATION; HMC ALGORITHM; QCD; INTEGRATION; DYNAMICS; MATRIX; QUARK; TRACE;
D O I
10.1103/PhysRevD.104.114507
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Algorithms based on normalizing flows are emerging as promising machine learning approaches to sampling complicated probability distributions in a way that can be made asymptotically exact. In the context of lattice field theory, proof-of-principle studies have demonstrated the effectiveness of this approach for scalar theories, gauge theories, and statistical systems. This work develops approaches that enable flow-based sampling of theories with dynamical fermions, which is necessary for the technique to be applied to lattice field theory studies of the Standard Model of particle physics and many condensed matter systems. As a practical demonstration, these methods are applied to the sampling of field configurations for a two-dimensional theory of massless staggered fermions coupled to a scalar field via a Yukawa interaction.
引用
收藏
页数:25
相关论文
共 123 条
[1]  
Agarap A. F., 2018, DEEP LEARNING USING, V2, P8375
[2]   Flow-based generative models for Markov chain Monte Carlo in lattice field theory [J].
Albergo, M. S. ;
Kanwar, G. ;
Shanahan, P. E. .
PHYSICAL REVIEW D, 2019, 100 (03)
[3]  
Albergo M. S., ARXIV210108176
[4]  
Amos B., 2017, PMLR, P146
[5]   THE PSEUDO-MARGINAL APPROACH FOR EFFICIENT MONTE CARLO COMPUTATIONS [J].
Andrieu, Christophe ;
Roberts, Gareth O. .
ANNALS OF STATISTICS, 2009, 37 (02) :697-725
[6]  
[Anonymous], ARXIV160207576
[7]   Randomized Algorithms for Estimating the Trace of an Implicit Symmetric Positive Semi-Definite Matrix [J].
Avron, Haim ;
Toledo, Sivan .
JOURNAL OF THE ACM, 2011, 58 (02)
[8]   Geometric algorithm for abelian-gauge models [J].
Azcoiti, V. ;
Follana, E. ;
Vaquero, A. ;
Di Carlo, G. .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (08)
[9]   Hot-dense Lattice QCD [J].
Bazavov, Alexei ;
Karsch, Frithjof ;
Mukherjee, Swagato ;
Petreczky, Peter .
EUROPEAN PHYSICAL JOURNAL A, 2019, 55 (11)
[10]   Event-chain Monte Carlo algorithms for hard-sphere systems [J].
Bernard, Etienne P. ;
Krauth, Werner ;
Wilson, David B. .
PHYSICAL REVIEW E, 2009, 80 (05)