A Lyapunov-Type Inequality for a Fractional Differential Equation under a Robin Boundary Condition

被引:33
作者
Jleli, Mohamed [1 ]
Ragoub, Lakhdar [2 ]
Samet, Bessem [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
[2] Al Yamamah Univ, Coll Comp & Informat Syst, Dept Math, Riyadh, Saudi Arabia
关键词
D O I
10.1155/2015/468536
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a new Lyapunov-type inequality for a class of fractional differential equations under Robin boundary conditions. The obtained inequality is used to obtain an interval where a linear combination of certain Mittag-Leffler functions has no real zeros.
引用
收藏
页数:5
相关论文
共 15 条
[1]  
[Anonymous], 2006, Journal of the Electrochemical Society
[3]  
Clark S, 1998, MATH INEQUAL APPL, V1, P201
[4]   Eigenvalue problems for fractional ordinary differential equations [J].
Duan, Jun-Sheng ;
Wang, Zhong ;
Liu, Yu-Lu ;
Qiu, Xiang .
CHAOS SOLITONS & FRACTALS, 2013, 46 :46-53
[5]   On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function [J].
Ferreira, Rui A. C. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (02) :1058-1063
[6]   A Lyapunov-type inequality for a fractional boundary value problem [J].
Ferreira, Rui A. C. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (04) :978-984
[7]  
LIAPOUNOFF A. M., 1907, ANN FAC SCI TOULOUSE, V9, P203, DOI DOI 10.5802/AFST.246
[8]   Fractional relaxation-oscillation and fractional diffusion-wave phenomena [J].
Mainardi, F .
CHAOS SOLITONS & FRACTALS, 1996, 7 (09) :1461-1477
[9]   On Mittag-Leffler-type functions in fractional evolution processes [J].
Mainardi, F ;
Gorenflo, R .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) :283-299
[10]  
Pachpatte B.G., 2005, Mathematical Inequalities