Sharp Hardy-Littlewood-Sobolev Inequality on the Upper Half Space

被引:63
作者
Dou, Jingbo [1 ]
Zhu, Meijun [2 ]
机构
[1] Xian Univ Finance & Econ, Sch Stat, Xian 710100, Shaanxi, Peoples R China
[2] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
基金
中国国家自然科学基金;
关键词
YAMABE PROBLEM; MANIFOLDS; UNIQUENESS; EXISTENCE; CONSTANTS; THEOREMS;
D O I
10.1093/imrn/rnt213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The sharp Hardy-Littlewood-Sobolev inequality on the upper half space is proved. The existences of extremal functions are obtained. For certain exponent, we classify all extremal functions via the method of moving sphere, and compute the best constants for the sharp inequality.
引用
收藏
页码:651 / 687
页数:37
相关论文
共 37 条