Sharp Hardy-Littlewood-Sobolev Inequality on the Upper Half Space

被引:64
作者
Dou, Jingbo [1 ]
Zhu, Meijun [2 ]
机构
[1] Xian Univ Finance & Econ, Sch Stat, Xian 710100, Shaanxi, Peoples R China
[2] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
基金
中国国家自然科学基金;
关键词
YAMABE PROBLEM; MANIFOLDS; UNIQUENESS; EXISTENCE; CONSTANTS; THEOREMS;
D O I
10.1093/imrn/rnt213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The sharp Hardy-Littlewood-Sobolev inequality on the upper half space is proved. The existences of extremal functions are obtained. For certain exponent, we classify all extremal functions via the method of moving sphere, and compute the best constants for the sharp inequality.
引用
收藏
页码:651 / 687
页数:37
相关论文
共 37 条
[1]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[2]   SHARP SOBOLEV INEQUALITIES ON THE SPHERE AND THE MOSER-TRUDINGER INEQUALITY [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1993, 138 (01) :213-242
[3]  
Brascamp H. J., 1974, J FUNCT ANAL, V17, P227
[4]  
BREZIS H, 1979, J MATH PURE APPL, V58, P137
[5]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[6]  
Brezis H., 1992, PARTIAL DIFFERENTIAL, P38
[7]   Positive solutions of nonlinear problems involving the square root of the Laplacian [J].
Cabre, Xavier ;
Tan, Jinggang .
ADVANCES IN MATHEMATICS, 2010, 224 (05) :2052-2093
[8]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[9]   Fractional Laplacian in conformal geometry [J].
Chang, Sun-Yung Alice ;
del Mar Gonzalez, Maria .
ADVANCES IN MATHEMATICS, 2011, 226 (02) :1410-1432
[10]  
Chen W., 2011, ARXIV11102539