Spectral renormalization group theory on networks

被引:10
|
作者
Aygun, Eser [1 ]
Erzan, Ayse [2 ]
机构
[1] Istanbul Tech Univ, Dept Comp Engn, TR-34469 Istanbul, Turkey
[2] Istanbul Tech Univ, Dept Engn Phys, TR-34469 Istanbul, Turkey
来源
CONTINUUM MODELS AND DISCRETE SYSTEMS SYMPOSIA (CMDS-12) | 2011年 / 319卷
关键词
D O I
10.1088/1742-6596/319/1/012007
中图分类号
O59 [应用物理学];
学科分类号
摘要
Discrete amorphous materials are best described in terms of arbitrary networks which can be embedded in three dimensional space. Investigating the thermodynamic equilibrium as well as non-equilibrium behavior of such materials around second order phase transitions call for special techniques. We set up a renormalization group scheme by expanding an arbitrary scalar field living on the nodes of an arbitrary network, in terms of the eigenvectors of the normalized graph Laplacian. The renormalization transformation involves, as usual, the integration over the more "rapidly varying" components of the field, corresponding to eigenvectors with larger eigenvalues, and then rescaling. The critical exponents depend on the particular graph through the spectral density of the eigenvalues.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] The impact of renormalization group theory on magnetism
    Koebler, U.
    Hoser, A.
    EUROPEAN PHYSICAL JOURNAL B, 2007, 60 (02): : 151 - 159
  • [32] RENORMALIZATION GROUP IN THEORY OF CRITICAL BEHAVIOR
    FISHER, ME
    REVIEWS OF MODERN PHYSICS, 1974, 46 (04) : 597 - 616
  • [33] Renormalization group theory of molecular dynamics
    Daiji Ichishima
    Yuya Matsumura
    Scientific Reports, 11
  • [34] Renormalization group theory in the new millennium
    O'Connor, D
    Stephens, CR
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 344 (4-6): : 155 - 157
  • [35] Renormalization Group Theory of Eigen Microstates
    Liu, Teng
    Hu, Gao-Ke
    Dong, Jia-Qi
    Fan, Jing-Fang
    Liu, Mao-Xin
    Chen, Xiao-Song
    CHINESE PHYSICS LETTERS, 2022, 39 (08)
  • [36] RENORMALIZATION-GROUP THEORY OF HYSTERESIS
    ZHONG, F
    ZHANG, JX
    PHYSICAL REVIEW LETTERS, 1995, 75 (10) : 2027 - 2030
  • [37] Perturbation theory and renormalization group equations
    Litim, DF
    Pawlowski, JM
    PHYSICAL REVIEW D, 2002, 65 (08): : 817011 - 817015
  • [38] The impact of renormalization group theory on magnetism
    U. Köbler
    A. Hoser
    The European Physical Journal B, 2007, 60 : 151 - 159
  • [39] RENORMALIZATION-GROUP THEORY FOR FLUIDS
    WHITE, JA
    ZHANG, S
    JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (03): : 2012 - 2019
  • [40] Information theory and renormalization group flows
    Apenko, S. M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (1-2) : 62 - 77