Numerical solution for an aggregation equation with degenerate diffusion

被引:1
作者
Carlos Cabrales, Roberto [1 ]
Gutierrez-Santacreu, Juan Vicente [2 ]
Rafael Rodriguez-Galvan, Jose [3 ]
机构
[1] Univ La Serena, Inst Invest Multidisciplinaria Ciencia & Tecnol, La Serena, Chile
[2] Univ Seville, Dept Matemat Aplicada I, ETSI Informat, Avda Reina Mercedes S-N, E-41012 Seville, Spain
[3] Univ Cadiz, Dept Matemat, Fac Ciencias, Campus Univ Puerto Real, E-11510 Cadiz, Spain
关键词
Finite-element approximation; Aggregation equation; Nonlinear diffusion; DISCRETE SCHEMES; MODEL; CONVERGENCE; STABILITY;
D O I
10.1016/j.amc.2020.125145
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical method for approximating weak solutions of an aggregation equation with degenerate diffusion is introduced. The numerical method consists of a finite element method together with a mass lumping technique and an extra stabilizing term plus a semi-implicit Euler time integration. Then we carry out a rigorous passage to the limit as the spatial and temporal discretization parameters tend to zero, and show that the sequence of finite element approximations converges toward the unique weak solution of the model at hands. In doing so, nonnegativity is attained due to the stabilizing term and the acuteness on partitions of the computational domain, and hence a priori energy estimates of finite element approximations are established. As we deal with a nonlinear problem, some form of strong convergence is required. The key compactness result is obtained via an adaptation of a Riesz-Frechet-Kolmogorov criterion by perturbation. A numerical example is also presented. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] A numerical method for a nonlocal diffusion equation with additive noise
    Medvedev, Georgi S.
    Simpson, Gideon
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2023, 11 (04): : 1433 - 1469
  • [32] SOLUTION OF DIFFUSION EQUATION WITH LOCAL DERIVATIVE WITH NEW PARAMETER
    Atangana, Abdon
    Goufo, Emile Franc Doungmo
    THERMAL SCIENCE, 2015, 19 : S231 - S238
  • [33] Diffusion Solution of the Equation of Magnetic Induction in a Moving Medium
    Lasukov, V. V.
    Malik, Kh. K.
    Moldovanova, E. A.
    Abdrashitova, M. O.
    Gorbacheva, E. S.
    Rozhkova, S. V.
    RUSSIAN PHYSICS JOURNAL, 2016, 59 (05) : 679 - 685
  • [34] Numerical solution for the wave equation
    Patricio, M. F.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2009, 86 (04) : 589 - 597
  • [35] Numerical solution of the Benjamin equation
    Dougalis, V. A.
    Duran, A.
    Mitsotakis, D.
    WAVE MOTION, 2015, 52 : 194 - 215
  • [36] A numerical solution for a telegraph equation
    Ashyralyev, Allaberen
    Modanli, Mahmut
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2014), 2014, 1611 : 300 - 304
  • [37] Decay of solution for degenerate Kirchhoff equation with general nonlinearity
    Araruna, Fagner D.
    Araujo, Anderson L. A.
    Louredo, Aldo T.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (05) : 2695 - 2708
  • [38] Numerical Solution for a Nonlinear Time-Space Fractional Convection-Diffusion Equation
    Basha, Merfat
    Anley, Eyaya Fekadie
    Dai, Binxiang
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2023, 18 (01):
  • [39] On the numerical solution of a convection-diffusion equation for particle orientation dynamics on geodesic grids
    Zharovsky, Evgeniy
    Moosaie, Amin
    Le Duc, Anne
    Manhart, Michael
    Simeon, Bernd
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (10) : 1554 - 1566
  • [40] Accurate analytical/numerical solution of the heat conduction equation
    Campo, Antonio
    Salazar, Abraham J.
    Celentano, Diego J.
    Raydan, Marcos
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2014, 24 (07) : 1519 - 1536