Extension of the best approximation operator in Orlicz spaces

被引:8
作者
Carrizo, Ivana [1 ]
Favier, Sergio [1 ]
Zo, Felipe [1 ]
机构
[1] UNSL CONICET, Inst Matemat Aplicada San Luis, RA-5700 San Luis, Argentina
关键词
D O I
10.1155/2008/374742
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (Omega, A, mu) be a probability space and L subset of A a sub-sigma-lattice of the sigma-algebra A. We study an extension of the best phi-approximation operator from an Orlicz space L(phi) to the space L(phi)', where phi' denotes the derivative of the convex, but not necessarily a strictly convex function phi. We obtain convergence results when a sequence of sigma-algebras B(n) converges to B(infinity) in a suitable way. Copyright (c) 2008 Ivana Carrizo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
引用
收藏
页数:15
相关论文
共 10 条
[1]   GENERALIZED RADON-NIKODYM DERIVATIVE [J].
BRUNK, HD ;
JOHANSEN, S .
PACIFIC JOURNAL OF MATHEMATICS, 1970, 34 (03) :585-&
[2]  
Favier S., 2001, ABSTR APPL ANAL, V6, P101
[3]  
Favier S., 2005, REAL ANAL EXCHANGE, V30, P29
[4]  
FAVIER S, SHARP CONDITIONS MAX
[5]   BEST APPROXIMANTS IN LPHI-SPACES [J].
LANDERS, D ;
ROGGE, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 51 (02) :215-237
[6]   ISOTONIC APPROXIMATION IN LS [J].
LANDERS, D ;
ROGGE, L .
JOURNAL OF APPROXIMATION THEORY, 1981, 31 (03) :199-223
[7]   Isotonic approximation in L1 [J].
Mazzone, F ;
Cuenya, H .
JOURNAL OF APPROXIMATION THEORY, 2002, 117 (02) :279-300
[8]   Maximal inequalities and lebesgue's differentiation theorem for best approximant by constant over balls [J].
Mazzone, F ;
Cuenya, H .
JOURNAL OF APPROXIMATION THEORY, 2001, 110 (02) :171-179
[9]   A characterization of best φ-approximants with applications to multidimensional isotonic approximation [J].
Mazzone, FD ;
Cuenya, HH .
CONSTRUCTIVE APPROXIMATION, 2005, 21 (02) :207-223
[10]  
Neveu J., 1965, MATH FDN CALCULUS PR