High strength of hybrid double-network hydrogels imparted by inter-network ionic bonds

被引:33
|
作者
Zhao, Xiaoyan [1 ]
Liang, Jun [1 ]
Shan, Guorong [1 ]
Pan, Pengju [1 ]
机构
[1] Zhejiang Univ, Coll Chem & Biol Engn, State Key Lab Chem Engn, 38 Zheda Rd, Hangzhou 310027, Peoples R China
关键词
OPPOSITELY CHARGED POLYELECTROLYTES; POLYION-COMPLEX HYDROGELS; ANGLE NEUTRON-SCATTERING; VOLUME-PHASE TRANSITION; INTERPENETRATING NETWORK; ENHANCED TOUGHNESS; CHEMICAL-STRUCTURE; DRUG-DELIVERY; GELS; COPOLYMER;
D O I
10.1039/c8tb02803f
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Interaction between networks has been proven to be of importance for mechanical property enhancement of double-network (DN) hydrogels. In this work, inter-network ionically cross-linked hybrid DN hydrogels have been prepared using poly(sodium 2-acrylamide-2-methylpropanesulfonate) (PNaAMPS) as the first network, and a co-polymer of a cationic monomer and acrylamide (AM) as the second network. Ionic complexes were formed between the two oppositely charged networks after dialyzing the hydrogels in water. Near the ion-balance point, hybrid DN hydrogels with enhanced strengths were achieved compared to the unmodified PNaAMPS/polyacrylamide (PAM) DN hydrogel. Synchrotron radiation small-angle X-ray scattering (SAXS) analyses were performed on the DN hydrogels. It was found that large and compact cross-linked domains were formed in the hybrid DN hydrogels, especially near the ion-balance point, as demonstrated by the SAXS results. These large and compact cross-linked domains, which indicate enhanced interactions between networks containing ionic bonds besides physical entanglements, dissipate additional concentrated stress, resulting in high strength of the hybrid DN hydrogels.
引用
收藏
页码:324 / 333
页数:10
相关论文
共 50 条
  • [1] Progress of High Strength Double-Network Hydrogels
    Ren Jie
    石化技术, 2018, 25 (11) : 112 - 112
  • [2] Double-network hydrogels with extremely high mechanical strength
    Gong, JP
    Katsuyama, Y
    Kurokawa, T
    Osada, Y
    ADVANCED MATERIALS, 2003, 15 (14) : 1155 - +
  • [3] Novel and high-strength, hybrid, double-network hydrogels based on carboxymethylcellulose
    Chen, Qiang
    Chen, Hong
    Yan, Xiaoqiang
    Wei, Dandan
    Jiang, Bing
    Zhu, Lin
    Yang, Jia
    Huang, Lina
    Zheng, Jie
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [4] Hybrid double network hydrogels with high strength and toughness
    Chen, Hong
    Chen, Qiang
    Yang, Fengyu
    Chu, Kuanwu
    Hu, Rundong
    Zhang, Mingzhen
    Ren, Baiping
    Zheng, Jie
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [5] Hybrid double-network hydrogels with excellent mechanical properties
    Li, Ting
    Zhang, Xuhui
    Xia, Bihua
    Ma, Piming
    Chen, Mingqing
    Du, Mingliang
    Wang, Yang
    Dong, Weifu
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (38) : 16569 - 16576
  • [6] Fatigue of double-network hydrogels
    Zhang, Wenlei
    Liu, Xiao
    Wang, Jikun
    Tang, Jingda
    Hu, Jian
    Lu, Tongqing
    Suo, Zhigang
    ENGINEERING FRACTURE MECHANICS, 2018, 187 : 74 - 93
  • [7] Hydroxypropyl cellulose enhanced ionic conductive double-network hydrogels
    Gan, Shuchun
    Bai, Shihang
    Chen, Cheng
    Zou, Yongliang
    Sun, Yingjuan
    Zhao, Jianhao
    Rong, Jianhua
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 181 : 418 - 425
  • [8] Hybrid double-network hydrogels with strong mechanical and antifouling properties
    Chen, Hong
    Yang, Fengyu
    Chen, Qiang
    Hu, Rundong
    Zhang, Mingzhen
    Ma, Jie
    Ren, Baiping
    Jiang, Binbo
    Zheng, Jie
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [9] Toughening Double-Network Hydrogels by Polyelectrolytes
    Zhang, Mengyuan
    Yang, Yuxuan
    Li, Meng
    Shang, Qinghua
    Xie, Ruilin
    Yu, Jing
    Shen, Kaixiang
    Zhang, Yanfeng
    Cheng, Yilong
    ADVANCED MATERIALS, 2023, 35 (26)
  • [10] Research progress on double-network hydrogels
    Huang, Xinxin
    Li, Jingchao
    Luo, Jing
    Gao, Qiang
    Mao, An
    Li, Jianzhang
    MATERIALS TODAY COMMUNICATIONS, 2021, 29