Convergence rates of deep ReLU networks for multiclass classification

被引:9
作者
Bos, Thijs [1 ]
Schmidt-Hieber, Johannes [2 ]
机构
[1] Leiden Univ, Leiden, Netherlands
[2] Univ Twente, Enschede, Netherlands
关键词
Convergence rates; ReLU networks; multiclass classification; conditional class probabilities; margin condition; PROBABILITY-INEQUALITIES; NEURAL-NETWORKS; INFORMATION; BOUNDS;
D O I
10.1214/22-EJS2011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For classification problems, trained deep neural networks return probabilities of class memberships. In this work we study convergence of the learned probabilities to the true conditional class probabilities. More specifically we consider sparse deep ReLU network reconstructions minimizing cross-entropy loss in the multiclass classification setup. Interesting phenomena occur when the class membership probabilities are close to zero. Convergence rates are derived that depend on the near-zero behaviour via a margin-type condition.
引用
收藏
页码:2724 / 2773
页数:50
相关论文
共 34 条
[1]  
ANDERSON GD, 1993, PAC J MATH, V160, P1
[2]  
[Anonymous], 2009, The elements of statistical learning
[3]   Fast learning rates for plug-in classifiers [J].
Audibert, Jean-Yves ;
Tsybakov, Alexandre B. .
ANNALS OF STATISTICS, 2007, 35 (02) :608-633
[4]   Convexity, classification, and risk bounds [J].
Bartlett, PL ;
Jordan, MI ;
McAuliffe, JD .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) :138-156
[5]   ON DEEP LEARNING AS A REMEDY FOR THE CURSE OF DIMENSIONALITY IN NONPARAMETRIC REGRESSION [J].
Bauer, Benedikt ;
Kohler, Michael .
ANNALS OF STATISTICS, 2019, 47 (04) :2261-2285
[7]   Minimum contrast estimators on sieves: exponential bounds and rates of convergence [J].
Birge, L ;
Massart, P .
BERNOULLI, 1998, 4 (03) :329-375
[8]  
Bojarski Mariusz, 2016, arXiv
[9]  
Dua D, 2017, UCI MACHINE LEARNING
[10]   Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique [J].
Greenspan, Hayit ;
van Ginneken, Bram ;
Summers, Ronald M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1153-1159