Long-term vegetation restoration increases carbon sequestration of different soil particles in a semi-arid desert

被引:22
作者
Bai, Lihua [1 ]
Zhang, Hong [1 ]
Zhang, Jianguo [1 ,2 ]
Li, Xiao [1 ]
Wang, Bo [1 ]
Miao, Hongzhi [1 ]
Sial, Tanveer Ali [1 ,3 ]
Dong, Qiang [4 ]
Fu, Guangjun [4 ]
Li, Limin [4 ]
机构
[1] Northwest A&F Univ, Coll Nat Resources & Environm, Key Lab Plant Nutr & Agrienvironm Northwest China, Minist Agr, Yangling 712100, Shaanxi, Peoples R China
[2] Chinese Acad Sci, Xinjiang Inst Ecol & Geog, Taklimakan Desert Res Stn, Korla 841000, Peoples R China
[3] Sindh Agr Univ, Dept Soil Sci, Tandojam 70060, Pakistan
[4] Desert Control Res Inst Shaanxi Prov, Yulin 719000, Peoples R China
基金
中国国家自然科学基金;
关键词
Mu Us Desert; soil inorganic carbon; soil organic carbon; soil particle composition; vegetation restoration; MU US DESERT; ORGANIC-CARBON; COMMUNITY STRUCTURE; LAND-USE; FRACTIONS;
D O I
10.1002/ecs2.3848
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Vegetation restoration in desert areas has an important influence on soil carbon sequestration. To understand the long-term effects of vegetation restoration on soil particle composition and carbon sequestration of different soil particles in semi-arid deserts, we collected the topsoil of different types of vegetation restored for different periods at the southeast margin of Mu Us Desert and analyzed the soil organic carbon (SOC) and soil inorganic carbon (SIC) contents in soil particles of different sizes. The results demonstrated that after vegetation restoration, soil particles of <0.05 mm and aggregates in arbor lands and shrub lands increased 8 and 4 times and 4.67 and 4 times than shifting sandy land (CK), respectively. The SOC and SIC in different soil particles under vegetation increased with the restoration period. Among different vegetation forms, arbor land had significant effect on SIC fixation. Soil particles of <0.05 mm contained the highest SOC and SIC contents (16.8 and 0.78 g/kg), followed by aggregates (8.26 and 6.79 g/kg), 0.05-0.25 mm (8.24 and 4.55 g/kg), and >0.25 mm (5.23 and 2.25 g/kg). As for total SOC storage, it was positively correlated with the organic carbon storage of <0.05 mm particles. We concluded that SOC and SIC of <0.05 mm soil particles and aggregates increase with the restoration period and play a leading role in soil carbon sequestration. From the perspective of long-term soil carbon sequestration, the best vegetation restoration mode in Mu Us Desert would be arbor forest.
引用
收藏
页数:11
相关论文
共 38 条
[1]   Rice (Oryza sativa L.) Establishment Techniques and Their Implications for Soil Properties, Global Warming Potential Mitigation and Crop Yields [J].
Alam, Md. Khairul ;
Bell, Richard W. ;
Hasanuzzaman, Mirza ;
Salahin, N. ;
Rashid, M. H. ;
Akter, Nadia ;
Akhter, S. ;
Islam, Mahammad Shariful ;
Islam, S. ;
Naznin, S. ;
Anik, M. F. A. ;
Apu, Md. Mosiur Rahman Bhuyin ;
Bin Saif, Hasib ;
Alam, M. J. ;
Khatun, Mst. Fatima .
AGRONOMY-BASEL, 2020, 10 (06)
[2]   Desertification control on soil inorganic and organic carbon accumulation in the topsoil of desert grassland in Ningxia, northwest China [J].
An, Hui ;
Li, Qiao-Ling ;
Yan, Xin ;
Wu, Xiu-Zhi ;
Liu, Ren-tao ;
Fang, Yan .
ECOLOGICAL ENGINEERING, 2019, 127 :348-355
[3]  
BAo S. D., 2000, SOIL AGR CHEM ANAL, P30, DOI DOI 10.1007/978-90-481-3585-1_121
[4]   Contributions of coniferous and broad-leaved species to temperate forest carbon uptake: a bottom-up approach [J].
Catovsky, S ;
Bazzaz, FA .
CANADIAN JOURNAL OF FOREST RESEARCH, 2000, 30 (01) :100-111
[5]  
CHADWICK OA, 1994, BIOGEOCHEMISTRY, V24, P115, DOI 10.1007/BF00003268
[6]   Soil aggregation and aggregate-associated organic carbon under typical natural halophyte communities in arid saline areas of Northwest China [J].
Cheng, Zhibo ;
Wang, Jingya ;
Gale, William J. ;
Yang, Haichang ;
Zhang, Fenghua .
PEDOSPHERE, 2020, 30 (02) :236-243
[7]   Quantifying global soil carbon losses in response to warming [J].
Crowther, T. W. ;
Todd-Brown, K. E. O. ;
Rowe, C. W. ;
Wieder, W. R. ;
Carey, J. C. ;
Machmuller, M. B. ;
Snoek, B. L. ;
Fang, S. ;
Zhou, G. ;
Allison, S. D. ;
Blair, J. M. ;
Bridgham, S. D. ;
Burton, A. J. ;
Carrillo, Y. ;
Reich, P. B. ;
Clark, J. S. ;
Classen, A. T. ;
Dijkstra, F. A. ;
Elberling, B. ;
Emmett, B. A. ;
Estiarte, M. ;
Frey, S. D. ;
Guo, J. ;
Harte, J. ;
Jiang, L. ;
Johnson, B. R. ;
Kroel-Dulay, G. ;
Larsen, K. S. ;
Laudon, H. ;
Lavallee, J. M. ;
Luo, Y. ;
Lupascu, M. ;
Ma, L. N. ;
Marhan, S. ;
Michelsen, A. ;
Mohan, J. ;
Niu, S. ;
Pendall, E. ;
Penuelas, J. ;
Pfeifer-Meister, L. ;
Poll, C. ;
Reinsch, S. ;
Reynolds, L. L. ;
Schmidt, I. K. ;
Sistla, S. ;
Sokol, N. W. ;
Templer, P. H. ;
Treseder, K. K. ;
Welker, J. M. ;
Bradford, M. A. .
NATURE, 2016, 540 (7631) :104-+
[8]   Biogeochemistry - Soil warming and organic carbon content [J].
Davidson, EA ;
Trumbore, SE ;
Amundson, R .
NATURE, 2000, 408 (6814) :789-790
[9]   Effect of biochar on carbon fractions and enzyme activity of red soil [J].
Demisie, Walelign ;
Liu, Zhaoyun ;
Zhang, Mingkui .
CATENA, 2014, 121 :214-221
[10]   Effects of different vegetation restoration measures on soil aggregate stability and erodibility on the Loess Plateau, China [J].
Dou, Yanxing ;
Yang, Yang ;
An, Shaoshan ;
Zhu, Zhaolong .
CATENA, 2020, 185