Numerical ranges of weighted shift matrices with periodic weights

被引:11
|
作者
Tsai, Ming Cheng [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 30010, Taiwan
关键词
Numerical range; Weighted shift matrix; Periodic weights; Degree-n homogeneous polynomial; Reducible matrix;
D O I
10.1016/j.laa.2011.04.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an n-by-n (n >= 2) matrix of the form [0 a(1) 0 a(n-1) a(n) 0] We show that if the a(j)'s are nonzero and their moduli are periodic, then the boundary of its numerical range contains a line segment. We also prove that partial derivative W (A) contains a noncircular elliptic arc if and only if the a(j)'s are nonzero, n is even, vertical bar a(1)vertical bar = vertical bar a(3)vertical bar = ... = vertical bar a(n-1)vertical bar, vertical bar a(2)vertical bar = vertical bar a(4)vertical bar = ... = vertical bar a(n)vertical bar and vertical bar a(1)vertical bar not equal vertical bar a(2)vertical bar. Finally, we give a criterion for A to be reducible and completely characterize the numerical ranges of such matrices. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2296 / 2302
页数:7
相关论文
共 50 条
  • [41] HIGHER RANK NUMERICAL RANGES OF RECTANGULAR MATRICES
    Zahraei, Mohsen
    Aghamollaei, Gholamreza
    ANNALS OF FUNCTIONAL ANALYSIS, 2015, 6 (02): : 133 - 142
  • [42] Quaternionic Numerical Ranges of Normal Quaternion Matrices
    Feng Lianggui
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 100 - 106
  • [43] On the Elliptic Numerical Ranges of 4 x 4 Matrices
    Dong, Chuandai
    Fang, Hualing
    Liu, Xueting
    2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 4, 2009, : 413 - 416
  • [44] SINGULAR VALUE INEQUALITIES FOR MATRICES WITH NUMERICAL RANGES IN A SECTOR
    Drury, Stephen
    Lin, Minghua
    OPERATORS AND MATRICES, 2014, 8 (04): : 1143 - 1148
  • [45] CONCAVE FUNCTIONS OF PARTITIONED MATRICES WITH NUMERICAL RANGES IN A SECTOR
    Hou, Lei
    Zhang, Dengpeng
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (02): : 583 - 589
  • [46] Equality of higher-rank numerical ranges of matrices
    Chang, Chi-Tung
    Gau, Hwa-Long
    Wang, Kuo-Zhong
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (05) : 626 - 638
  • [47] The Elliptic Numerical Ranges of 4 x 4 Matrices
    Liu, Xueting
    Li, Hongkui
    2009 IITA INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS ENGINEERING, PROCEEDINGS, 2009, : 566 - +
  • [48] THE NUMERICAL RADIUS OF A WEIGHTED SHIFT OPERATOR
    Undrakh, Batzorig
    Nakazato, Hiroshi
    Vandanjav, Adiyasuren
    Chien, Mao-Ting
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2015, 30 : 944 - 963
  • [49] Numerical ranges of companion matrices: flat portions on the boundary
    Eldred, Jeffrey
    Rodman, Leiba
    Spitkovsky, Ilya
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (11-12) : 1295 - 1311
  • [50] DETERMINANTAL POLYNOMIALS OF A WEIGHTED SHIFT MATRIX WITH PALINDROMIC GEOMETRIC WEIGHTS
    Batzorig, Undrakh
    OPERATORS AND MATRICES, 2022, 16 (02): : 309 - 322