Numerical ranges of weighted shift matrices with periodic weights

被引:11
作者
Tsai, Ming Cheng [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 30010, Taiwan
关键词
Numerical range; Weighted shift matrix; Periodic weights; Degree-n homogeneous polynomial; Reducible matrix;
D O I
10.1016/j.laa.2011.04.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an n-by-n (n >= 2) matrix of the form [0 a(1) 0 a(n-1) a(n) 0] We show that if the a(j)'s are nonzero and their moduli are periodic, then the boundary of its numerical range contains a line segment. We also prove that partial derivative W (A) contains a noncircular elliptic arc if and only if the a(j)'s are nonzero, n is even, vertical bar a(1)vertical bar = vertical bar a(3)vertical bar = ... = vertical bar a(n-1)vertical bar, vertical bar a(2)vertical bar = vertical bar a(4)vertical bar = ... = vertical bar a(n)vertical bar and vertical bar a(1)vertical bar not equal vertical bar a(2)vertical bar. Finally, we give a criterion for A to be reducible and completely characterize the numerical ranges of such matrices. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2296 / 2302
页数:7
相关论文
共 6 条
[1]  
[Anonymous], 1991, TOPICS MATRIX ANAL, DOI DOI 10.1017/CBO9780511840371
[2]   Condition for the numerical range to contain an elliptic disc [J].
Gau, HL ;
Wu, PY .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 364 :213-222
[3]  
Gustafson K. E., 1997, NUMERICAL RANGE FIEL
[4]  
Horn R.A., 2012, Matrix Analysis
[5]  
Kippenhahn R., 1951, Math. Nachr., V6, P193
[6]   Numerical ranges of weighted shift matrices [J].
Tsai, Ming Cheng ;
Wu, Pei Yuan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (02) :243-254