ON THE PROBABILISTIC DEGREES OF SYMMETRIC BOOLEAN FUNCTIONS

被引:0
作者
Srinivasan, Srikanth [1 ]
Tripathi, Utkarsh [1 ]
Venkitesh, S. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Bombay, Maharashtra, India
关键词
probabilistic degree; symmetric Boolean function; computational complexity; BOUNDED-DEPTH; CIRCUITS; SIZE;
D O I
10.1137/19M1294162
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The probabilistic degree of a Boolean function f : {0, 1}(n) -> {0, 1} is defined to be the smallest d such that there is a random polynomial P of degree at most d that agrees with f at each point with high probability. Introduced by Razborov [Mat. Zametki, 41 (1987), pp. 598-607], upper and lower bounds on probabilistic degrees of Boolean functions-specifically symmetric Boolean functions-have been used to prove explicit lower bounds, design pseudorandom generators, and devise algorithms for combinatorial problems. In this paper, we characterize the probabilistic degrees of all symmetric Boolean functions up to polylogarithmic factors over all fields of fixed characteristic (positive or zero).
引用
收藏
页码:2070 / 2092
页数:23
相关论文
共 50 条
  • [41] The complexity of modular decomposition of Boolean functions
    Bioch, JC
    DISCRETE APPLIED MATHEMATICS, 2005, 149 (1-3) : 1 - 13
  • [42] On the parity complexity measures of Boolean functions
    Zhang, Zhiqiang
    Shi, Yaoyun
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (26-28) : 2612 - 2618
  • [43] On the modulo degree complexity of Boolean functions
    Li, Qian
    Sun, Xiaoming
    THEORETICAL COMPUTER SCIENCE, 2020, 818 (818) : 32 - 40
  • [44] On the Modulo Degree Complexity of Boolean Functions
    Li, Qian
    Sun, Xiaoming
    COMPUTING AND COMBINATORICS, COCOON 2017, 2017, 10392 : 384 - 395
  • [45] Symmetric Functions Capture General Functions
    Lipton, Richard J.
    Regan, Kenneth W.
    Rudra, Atri
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2011, 2011, 6907 : 436 - 447
  • [46] Using the Renormalization Group to Classify Boolean Functions
    S. N. Coppersmith
    Journal of Statistical Physics, 2008, 130 : 1063 - 1085
  • [47] New bounds for energy complexity of Boolean functions
    Dinesh, Krishnamoorthy
    Otiv, Samir
    Sarma, Jayalal
    THEORETICAL COMPUTER SCIENCE, 2020, 845 : 59 - 75
  • [48] The monotone circuit complexity of quadratic Boolean functions
    Amano, Kazuyuki
    Maruoka, Akira
    ALGORITHMICA, 2006, 46 (01) : 3 - 14
  • [49] ON THE STRUCTURE OF BOOLEAN FUNCTIONS WITH SMALL SPECTRAL NORM
    Shpilka, Amir
    Tal, Avishay
    Volk, Ben Lee
    COMPUTATIONAL COMPLEXITY, 2017, 26 (01) : 229 - 273
  • [50] Representations of Monotone Boolean Functions by Linear Programs
    Oliveira, Mateus de Oliveira
    Pudlak, Pavel
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2019, 11 (04)