ON THE PROBABILISTIC DEGREES OF SYMMETRIC BOOLEAN FUNCTIONS

被引:0
作者
Srinivasan, Srikanth [1 ]
Tripathi, Utkarsh [1 ]
Venkitesh, S. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Bombay, Maharashtra, India
关键词
probabilistic degree; symmetric Boolean function; computational complexity; BOUNDED-DEPTH; CIRCUITS; SIZE;
D O I
10.1137/19M1294162
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The probabilistic degree of a Boolean function f : {0, 1}(n) -> {0, 1} is defined to be the smallest d such that there is a random polynomial P of degree at most d that agrees with f at each point with high probability. Introduced by Razborov [Mat. Zametki, 41 (1987), pp. 598-607], upper and lower bounds on probabilistic degrees of Boolean functions-specifically symmetric Boolean functions-have been used to prove explicit lower bounds, design pseudorandom generators, and devise algorithms for combinatorial problems. In this paper, we characterize the probabilistic degrees of all symmetric Boolean functions up to polylogarithmic factors over all fields of fixed characteristic (positive or zero).
引用
收藏
页码:2070 / 2092
页数:23
相关论文
共 50 条
  • [31] Logics with Probabilistic Team Semantics and the Boolean Negation
    Hannula, Miika
    Hirvonen, Minna
    Kontinen, Juha
    Mahmood, Yasir
    Meier, Arne
    Virtema, Jonni
    LOGICS IN ARTIFICIAL INTELLIGENCE, JELIA 2023, 2023, 14281 : 665 - 680
  • [32] Logics with probabilistic team semantics and the Boolean negation
    Hannula, Miika
    Hirvonen, Minna
    Kontinen, Juha
    Mahmood, Yasir
    Meier, Arne
    Virtema, Jonni
    JOURNAL OF LOGIC AND COMPUTATION, 2025, 35 (03)
  • [33] On (2m+1)-variable symmetric Boolean functions with submaximum algebraic immunity 2m-1
    Liao QunYing
    Liu Feng
    Feng KeQin
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (01): : 17 - 28
  • [34] On (2m + 1)-variable symmetric Boolean functions with submaximum algebraic immunity 2m−1
    QunYing Liao
    Feng Liu
    KeQin Feng
    Science in China Series A: Mathematics, 2009, 52 : 17 - 28
  • [35] On Kolmogorov's superpositions and Boolean functions
    Beiu, V
    VTH BRAZILIAN SYMPOSIUM ON NEURAL NETWORKS, PROCEEDINGS, 1998, : 55 - 60
  • [37] On the Complexity of Boolean Functions in Different Characteristics
    Gopalan, Parikshit
    Lovett, Shachar
    Shpilka, Amir
    PROCEEDINGS OF THE 24TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, 2009, : 173 - +
  • [38] Structured Decomposition for Reversible Boolean Functions
    Jiang, Jiaqing
    Sun, Xiaoming
    Sun, Yuan
    Wu, Kewen
    Xia, Zhiyu
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2020, 39 (10) : 2410 - 2421
  • [39] The complexity of AND-decomposition of Boolean functions
    Emelyanov, Pavel
    Ponomaryov, Denis
    DISCRETE APPLIED MATHEMATICS, 2020, 280 : 113 - 132
  • [40] THE COMPLEXITY OF BOOLEAN FUNCTIONS IN DIFFERENT CHARACTERISTICS
    Gopalan, Parikshit
    Lovett, Shachar
    Shpilka, Amir
    COMPUTATIONAL COMPLEXITY, 2010, 19 (02) : 235 - 263