ON THE PROBABILISTIC DEGREES OF SYMMETRIC BOOLEAN FUNCTIONS

被引:0
作者
Srinivasan, Srikanth [1 ]
Tripathi, Utkarsh [1 ]
Venkitesh, S. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Bombay, Maharashtra, India
关键词
probabilistic degree; symmetric Boolean function; computational complexity; BOUNDED-DEPTH; CIRCUITS; SIZE;
D O I
10.1137/19M1294162
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The probabilistic degree of a Boolean function f : {0, 1}(n) -> {0, 1} is defined to be the smallest d such that there is a random polynomial P of degree at most d that agrees with f at each point with high probability. Introduced by Razborov [Mat. Zametki, 41 (1987), pp. 598-607], upper and lower bounds on probabilistic degrees of Boolean functions-specifically symmetric Boolean functions-have been used to prove explicit lower bounds, design pseudorandom generators, and devise algorithms for combinatorial problems. In this paper, we characterize the probabilistic degrees of all symmetric Boolean functions up to polylogarithmic factors over all fields of fixed characteristic (positive or zero).
引用
收藏
页码:2070 / 2092
页数:23
相关论文
共 50 条
  • [21] Synthesis of Logic Units for Calculating Self-Dual Symmetric Boolean Functions
    Suprun, V. P.
    Korobko, F. S.
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2014, 48 (01) : 17 - 24
  • [22] On the 2m-variable symmetric Boolean functions with maximum algebraic immunity
    Qu LongJiang
    Li Chao
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2008, 51 (02): : 120 - 127
  • [23] Two Classes of Symmetric Boolean Functions With Optimum Algebraic Immunity: Construction and Analysis
    Chen, Yindong
    Lu, Peizhong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (04) : 2522 - 2538
  • [24] On 2k-Variable Symmetric Boolean Functions With Maximum Algebraic Immunity k
    Wang, Hui
    Peng, Jie
    Li, Yuan
    Kan, Haibin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (08) : 5612 - 5624
  • [25] The Degree of Two Classes of 3rd Order Correlation Immune Symmetric Boolean Functions
    Peng, Jie
    Kan, Haibin
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2014, E97A (01) : 365 - 370
  • [26] Weight support technique and the symmetric Boolean functions with maximum algebraic immunity on even number of variables
    Qu, Longjiang
    Li, Chao
    INFORMATION SECURITY AND CRYPTOLOGY, 2008, 4990 : 271 - 282
  • [27] On connected Boolean functions
    Ekin, O
    Hammer, PL
    Kogan, A
    DISCRETE APPLIED MATHEMATICS, 1999, 97 : 337 - 362
  • [28] APPROXIMATING BOOLEAN FUNCTIONS WITH DEPTH-2 CIRCUITS
    Blais, Eric
    Tan, Li-Yang
    SIAM JOURNAL ON COMPUTING, 2015, 44 (06) : 1583 - 1600
  • [29] Computational complexity of Boolean functions
    Korshunov, A. D.
    RUSSIAN MATHEMATICAL SURVEYS, 2012, 67 (01) : 93 - 165
  • [30] On the complexity of balanced Boolean functions
    Bernasconi, A
    INFORMATION PROCESSING LETTERS, 1999, 70 (04) : 157 - 163