Research on Handwritten Note Recognition in Digital Music Classroom Based on Deep Learning

被引:4
|
作者
Wang, Yanfang [1 ]
机构
[1] Ordos Vocat Coll, Dept Humanities Management, Ordos, Peoples R China
来源
JOURNAL OF INTERNET TECHNOLOGY | 2021年 / 22卷 / 06期
关键词
Digital music classroom; Handwritten note recognition; Deep learning; Gaussian process; Non-parametric estimation; NETWORKS;
D O I
10.53106/160792642021112206020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Music is an indispensable subject in quality education, which plays an important role in improving students' overall quality. Traditional music teaching is mainly a one-way teaching led by teachers. The teaching style is monotonous and the teaching resources are lacking. It is in sharp contrast with diversified music learning, which affects students' mastery of basic music skills. The research of this paper is mainly based on the metaphor of "paper and pen", and the user-centered natural interaction method is used as the design idea to identify the handwritten notes in music teaching in order to provide a natural and efficient teaching environment for music education. Handwritten note recognition draws on the idea of metric learning. Based on the deep Gaussian process model, a non-parametric model, a deep Gaussian matching network for small batch handwritten note recognition is proposed. The framework can adaptively learn a deep structure that can effectively map the labeled support set and unlabeled samples to its label, while avoiding overfitting due to insufficient training data. In the training stage of the deep Gaussian process model, the standardized flow method is used to construct a flexible variational distribution, which improves the quality of inference. Gaussian Processes (GP) are type of supervised learning system that can be used to solve problems like regression and probabilistic classification. Gaussian processes have the following advantages: The forecast generalizes the data from the observations. And when sparse the Gaussian model to reduce the amount of calculation, the optimal k-means method is used to find false points. Experiments were carried out on the handwritten note data set collected in the digital music classroom. The experimental results show that compared with the traditional deep neural network model, the accuracy of the algorithm proposed in this paper has increased from 88% to 94.7% in a single learning sample, and the model proposed in this paper does not rely on fine-tuning and controls the actual calculation amount. The handwritten note recognition effect is better, and it has good application prospects in digital music classrooms.
引用
收藏
页码:1443 / +
页数:14
相关论文
共 50 条
  • [21] Deep Learning for Handwritten Java']Javanese Character Recognition
    Rismiyati
    Khadijah
    Nurhadiyatna, Adi
    2017 1ST INTERNATIONAL CONFERENCE ON INFORMATICS AND COMPUTATIONAL SCIENCES (ICICOS), 2017, : 59 - 63
  • [22] Deep Learning Approach for Recognition of Handwritten Kannada Numerals
    Ganesh, Anirudh
    Jadhav, Ashwin R.
    Pragadeesh, K. A. Cibi
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR 2016), 2018, 614 : 294 - 303
  • [23] A Deep Learning Approach for Handwritten Arabic Names Recognition
    Mustafa, Mohamed Elhafiz
    Elbashir, Murtada Khalafallah
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (01) : 678 - 682
  • [24] Research on Asparagus Recognition Based on Deep Learning
    Yu, Jie
    Zhang, Chao
    Wang, Junmei
    Zhang, Mingzhi
    Zhang, Xingguo
    Li, Xiaoqin
    IEEE ACCESS, 2023, 11 : 117362 - 117367
  • [25] Arabic Handwritten Recognition Using Deep Learning: A Survey
    Naseem Alrobah
    Saleh Albahli
    Arabian Journal for Science and Engineering, 2022, 47 : 9943 - 9963
  • [26] Handwritten Word Recognition Using Deep Learning Methods
    Lagios, Vasileios
    Perikos, Isidoros
    Hatzilygeroudis, Ioannis
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS. AIAI 2023 IFIP WG 12.5 INTERNATIONAL WORKSHOPS, 2023, 677 : 347 - 358
  • [27] Research on Face Recognition Based on Deep Learning
    Han, Xiao
    Du, Qingdong
    2018 SIXTH INTERNATIONAL CONFERENCE ON DIGITAL INFORMATION, NETWORKING, AND WIRELESS COMMUNICATIONS (DINWC), 2018, : 53 - 58
  • [28] Deep Learning Based Digital Signal Modulation Recognition
    Fu, Junqiang
    Zhao, Chenglin
    Li, Bin
    Peng, Xiao
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2015, 322 : 955 - 964
  • [29] Deep Learning-Based Child Handwritten Arabic Character Recognition and Handwriting Discrimination
    Alwagdani, Maram Saleh
    Jaha, Emad Sami
    SENSORS, 2023, 23 (15)
  • [30] Deep learning-based recognition system for pashto handwritten text: benchmark on PHTI
    Hussain, Ibrar
    Ahmad, Riaz
    Ullah, Khalil
    Muhammad, Siraj
    Elhassan, Rasha
    Syed, Ikram
    PEERJ COMPUTER SCIENCE, 2024, 10