CONTACT AND VOTER PROCESSES ON THE INFINITE PERCOLATION CLUSTER AS MODELS OF HOST-SYMBIONT INTERACTIONS

被引:16
作者
Bertacchi, D. [1 ]
Lanchier, N. [2 ]
Zucca, F. [3 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
[2] Arizona State Univ, Sch Math & Stat Sci, Tempe, AZ 85287 USA
[3] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
基金
美国国家科学基金会;
关键词
Contact process; voter model; site percolation; logistic growth; branching random walks; random walks; host; symbiont; infrapopulation; metapopulation; infracommunity; component community; STOCHASTIC SPATIAL MODELS; RANDOM-WALKS; PATHOGEN;
D O I
10.1214/10-AAP734
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce spatially explicit stochastic processes to model multispecies host-symbiont interactions. The host environment is static, modeled by the infinite percolation cluster of site percolation. Symbionts evolve on the infinite cluster through contact or voter type interactions, where each host may be infected by a colony of symbionts. In the presence of a single symbiont species, the condition for invasion as a function of the density of the habitat of hosts and the maximal size of the colonies is investigated in details. In the presence of multiple symbiont species, it is proved that the community of symbionts clusters in two dimensions whereas symbiont species may coexist in higher dimensions.
引用
收藏
页码:1215 / 1252
页数:38
相关论文
共 29 条
[1]  
[Anonymous], 2000, CAMBRIDGE TRACTS MAT
[2]  
[Anonymous], 1984, CARUS MATH MONOGRAPH
[3]  
BARLOW M, 2009, ARXIV10033255
[4]   Random walks on supercritical percolation clusters [J].
Barlow, MT .
ANNALS OF PROBABILITY, 2004, 32 (04) :3024-3084
[5]   A SELF-REGULATING AND PATCH SUBDIVIDED POPULATION [J].
Belhadji, Lamia ;
Bertacchi, Daniela ;
Zucca, Fabio .
ADVANCES IN APPLIED PROBABILITY, 2010, 42 (03) :899-912
[6]   APPROXIMATING CRITICAL PARAMETERS OF BRANCHING RANDOM WALKS [J].
Bertacchi, Daniela ;
Zucca, Fabio .
JOURNAL OF APPLIED PROBABILITY, 2009, 46 (02) :463-478
[7]   ON THE WILLIAMS-BJERKNES TUMOR-GROWTH MODEL .2. [J].
BRAMSON, M ;
GRIFFEATH, D .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1980, 88 (SEP) :339-357
[8]   A SIMPLE PROOF OF THE STABILITY-CRITERION OF GRAY AND GRIFFEATH [J].
BRAMSON, M ;
DURRETT, R .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 80 (02) :293-298
[9]   ON THE WILLIAMS-BJERKNES TUMOR-GROWTH MODEL .1. [J].
BRAMSON, M ;
GRIFFEATH, D .
ANNALS OF PROBABILITY, 1981, 9 (02) :173-185
[10]  
CLIFFORD P, 1973, BIOMETRIKA, V60, P581, DOI 10.2307/2335008