A Lyapunov-type bound in Rd

被引:56
作者
Bentkus, V [1 ]
机构
[1] Vilnius Pedag Univ, Dept Math & Informat, LT-08106 Vilnius, Lithuania
关键词
multidimensional; central limit theorem; Berry-Esseen bound; Lyapunov; dependence on dimension; nonidentically distributed;
D O I
10.1137/S0040585X97981123
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X-1,... X-n be independent random vectors taking values in R-d such that EXk = 0 for all k. Write S = X-1 + ... + X-n. Assume that the covariance operator, say C-2, of S is invertible. Let Z be a centered Gaussian random vector such that covariances of S and Z are equal. Let C stand for the class of all convex subsets of R-d. We prove a Lyapunov-type bound for Delta = sup(A is an element of C) vertical bar P{S is an element of A} - P{Z is an element of A}vertical bar. Namely, Delta <= cd(1/4)beta with beta = beta(1) +...+ beta(1) and beta(k) = E vertical bar C-1Xk vertical bar(3), where c is an absolute constant. If the random variables X-1,..., X-n are independent and identically distributed and X-k has identity covariance, then the bound specifies to Delta <= cd(1/4)E vertical bar X-1 vertical bar(3)/root n. Whether one can remove the factor d(1/4) or replace it with a better one (eventually by 1) remains an open question.
引用
收藏
页码:311 / 323
页数:13
相关论文
共 15 条
[1]  
[Anonymous], 1998, NORMAL APPROXIMATION
[2]   THE REVERSE ISOPERIMETRIC PROBLEM FOR GAUSSIAN MEASURE [J].
BALL, K .
DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 10 (04) :411-420
[3]   On the dependence of the Berry-Esseen bound on dimension [J].
Bentkus, V .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 113 (02) :385-402
[4]  
Bentkus V., 2003, Lith. Math. J, V43, P367, DOI DOI 10.1023/B:LIMA.0000009685.65777.06
[5]  
BENTKUS V. Y., 1986, LITOVSK MAT SB, V26, P205
[6]  
Bhattacharya R. N., 1986, Normal Approximation and Asymptotic Expansions
[7]   ON THE RATE OF CONVERGENCE IN THE MULTIVARIATE CLT [J].
GOTZE, F .
ANNALS OF PROBABILITY, 1991, 19 (02) :724-739
[8]  
Nagaev SV, 2000, THEOR PROBAB APPL+, V45, P152
[9]  
NAGAEV SV, 1976, LECT NOTES MATH, P419
[10]  
NAZAROV F, 2001, UNPUB ASYMPTOTIC BEH