Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement

被引:216
作者
Chanda, B
Asamoah, OK
Blunck, R
Roux, B
Bezanilla, F
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Physiol, Los Angeles, CA 90025 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Anesthesiol, Los Angeles, CA 90025 USA
[3] Cornell Univ, Weill Med Coll, Dept Physiol & Biophys, New York, NY 10021 USA
[4] Ctr Estudios Cient, Valdivia, Chile
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nature03888
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Voltage-gated ion channels are responsible for generating electrical impulses in nerves and other excitable cells. The fourth transmembrane helix (S4) in voltage-gated channels is the primary voltage-sensing unit that mediates the response to a changing membrane electric field(1,2). The molecular mechanism of voltage sensing, particularly with respect to the magnitude of the transmembrane movement of S4, remains controversial(3-5). To determine the extent of this transmembrane movement, we use fluorescent resonance energy transfer between the S4 domain and a reference point in the lipid bilayer. The lipophilic ion dipicrylamine distributes on either side of the lipid bilayer depending on the membrane potential, and is used here as a resonance-energy-transfer acceptor from donor molecules attached to several positions in the Shaker K+ channel. A voltage-driven transmembrane movement of the donor should produce a transient fluorescence change because the acceptor also translocates as a function of voltage. In Shaker K+ channels no such transient fluorescence is observed, indicating that the S4 segment does not translocate across the lipid bilayer. Based on these observations, we propose a molecular model of voltage gating that can account for the observed 13e gating charge with limited transmembrane S4 movement.
引用
收藏
页码:852 / 856
页数:5
相关论文
共 31 条
  • [1] Structure and mechanism of the lactose permease of Escherichia coli
    Abramson, J
    Smirnova, I
    Kasho, V
    Verner, G
    Kaback, HR
    Iwata, S
    [J]. SCIENCE, 2003, 301 (5633) : 610 - 615
  • [2] Contribution of the S4 segment to gating charge in the Shaker K+ channel
    Aggarwal, SK
    MacKinnon, R
    [J]. NEURON, 1996, 16 (06) : 1169 - 1177
  • [3] Stirring up controversy with a voltage sensor paddle
    Ahern, CA
    Horn, R
    [J]. TRENDS IN NEUROSCIENCES, 2004, 27 (06) : 303 - 307
  • [4] A fluorometric approach to local electric field measurements in a voltage-gated ion channel
    Asamoah, OK
    Wuskell, JP
    Loew, LM
    Bezanilla, F
    [J]. NEURON, 2003, 37 (01) : 85 - 97
  • [5] The voltage sensor in voltage-dependent ion channels
    Bezanilla, F
    [J]. PHYSIOLOGICAL REVIEWS, 2000, 80 (02) : 555 - 592
  • [6] CYSTEINES IN THE SHAKER K+ CHANNEL ARE NOT ESSENTIAL FOR CHANNEL ACTIVITY OR ZINC MODULATION
    BOLAND, LM
    JURMAN, ME
    YELLEN, G
    [J]. BIOPHYSICAL JOURNAL, 1994, 66 (03) : 694 - 699
  • [7] CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS
    BROOKS, BR
    BRUCCOLERI, RE
    OLAFSON, BD
    STATES, DJ
    SWAMINATHAN, S
    KARPLUS, M
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) : 187 - 217
  • [8] CATTERALL WA, 1986, ANNU REV BIOCHEM, V55, P953, DOI 10.1146/annurev.biochem.55.1.953
  • [9] Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy
    Cha, A
    Snyder, GE
    Selvin, PR
    Bezanilla, F
    [J]. NATURE, 1999, 402 (6763) : 809 - 813
  • [10] Structural implications of fluorescence quenching in the Shaker K+ channel
    Cha, A
    Bezanilla, F
    [J]. JOURNAL OF GENERAL PHYSIOLOGY, 1998, 112 (04) : 391 - 408