Gating charge displacement in voltage-gated ion channels involves limited transmembrane movement

被引:216
作者
Chanda, B
Asamoah, OK
Blunck, R
Roux, B
Bezanilla, F
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Dept Physiol, Los Angeles, CA 90025 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Dept Anesthesiol, Los Angeles, CA 90025 USA
[3] Cornell Univ, Weill Med Coll, Dept Physiol & Biophys, New York, NY 10021 USA
[4] Ctr Estudios Cient, Valdivia, Chile
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nature03888
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Voltage-gated ion channels are responsible for generating electrical impulses in nerves and other excitable cells. The fourth transmembrane helix (S4) in voltage-gated channels is the primary voltage-sensing unit that mediates the response to a changing membrane electric field(1,2). The molecular mechanism of voltage sensing, particularly with respect to the magnitude of the transmembrane movement of S4, remains controversial(3-5). To determine the extent of this transmembrane movement, we use fluorescent resonance energy transfer between the S4 domain and a reference point in the lipid bilayer. The lipophilic ion dipicrylamine distributes on either side of the lipid bilayer depending on the membrane potential, and is used here as a resonance-energy-transfer acceptor from donor molecules attached to several positions in the Shaker K+ channel. A voltage-driven transmembrane movement of the donor should produce a transient fluorescence change because the acceptor also translocates as a function of voltage. In Shaker K+ channels no such transient fluorescence is observed, indicating that the S4 segment does not translocate across the lipid bilayer. Based on these observations, we propose a molecular model of voltage gating that can account for the observed 13e gating charge with limited transmembrane S4 movement.
引用
收藏
页码:852 / 856
页数:5
相关论文
共 31 条
[1]   Structure and mechanism of the lactose permease of Escherichia coli [J].
Abramson, J ;
Smirnova, I ;
Kasho, V ;
Verner, G ;
Kaback, HR ;
Iwata, S .
SCIENCE, 2003, 301 (5633) :610-615
[2]   Contribution of the S4 segment to gating charge in the Shaker K+ channel [J].
Aggarwal, SK ;
MacKinnon, R .
NEURON, 1996, 16 (06) :1169-1177
[3]   Stirring up controversy with a voltage sensor paddle [J].
Ahern, CA ;
Horn, R .
TRENDS IN NEUROSCIENCES, 2004, 27 (06) :303-307
[4]   A fluorometric approach to local electric field measurements in a voltage-gated ion channel [J].
Asamoah, OK ;
Wuskell, JP ;
Loew, LM ;
Bezanilla, F .
NEURON, 2003, 37 (01) :85-97
[5]   The voltage sensor in voltage-dependent ion channels [J].
Bezanilla, F .
PHYSIOLOGICAL REVIEWS, 2000, 80 (02) :555-592
[6]   CYSTEINES IN THE SHAKER K+ CHANNEL ARE NOT ESSENTIAL FOR CHANNEL ACTIVITY OR ZINC MODULATION [J].
BOLAND, LM ;
JURMAN, ME ;
YELLEN, G .
BIOPHYSICAL JOURNAL, 1994, 66 (03) :694-699
[7]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[8]  
CATTERALL WA, 1986, ANNU REV BIOCHEM, V55, P953, DOI 10.1146/annurev.biochem.55.1.953
[9]   Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy [J].
Cha, A ;
Snyder, GE ;
Selvin, PR ;
Bezanilla, F .
NATURE, 1999, 402 (6763) :809-813
[10]   Structural implications of fluorescence quenching in the Shaker K+ channel [J].
Cha, A ;
Bezanilla, F .
JOURNAL OF GENERAL PHYSIOLOGY, 1998, 112 (04) :391-408