SOME ESTIMATES OF THE NORMAL APPROXIMATION FOR φ-MIXING RANDOM VARIABLES

被引:0
作者
Sunklodas, Jonas Kazys [1 ]
机构
[1] Vilnius State Univ, Inst Math & Informat, LT-08663 Vilnius, Lithuania
关键词
normal approximations; phi-mixing condition; weakly dependent random variables; CENTRAL-LIMIT-THEOREM; SUMS; CONVERGENCE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let xi(n) be phi-mixing sequence of real random variables such that E xi(n) = 0, and let Y be a standard normal random variable. Write S-n = xi(1) + ... + xi(n) and consider the normalized sums Z(n) = S-n/ B-n, where B-n(2) = ESn2. Assume that a thrice differentiable function h : R -> R satisfies sup(x is an element of R) vertical bar h'''(x)vertical bar < infinity. We obtain upper bounds for Delta(n) = vertical bar Eh(Z(n)) - Eh(Y)vertical bar in terms of Lyapunov fractions with explicit constants (see Theorem 1). In a particular case, the obtained upper bound of Delta(n) is of order O(n(-1/2)). We note that the phi-mixing coefficients phi(r) are defined between the " past" and " future." To prove the results, we apply the Bentkus approach.
引用
收藏
页码:260 / 273
页数:14
相关论文
共 24 条
  • [1] [Anonymous], 2004, TEOR VEROYATN PRIMEN
  • [2] [Anonymous], SIB MATH J
  • [3] [Anonymous], TEOR VEROYATN PRIMEN
  • [4] Bentkus V., 2003, LITH MATH J, V43, P367, DOI [10.1023/B:LIMA.0000009685.65777.06, DOI 10.1023/B:LIMA.0000009685.65777.06]
  • [5] Bentkus V, 2007, PUBL MATH DEBRECEN, V70, P253
  • [6] Bulinski A.V., 1989, LIMIT THEOREMS CONDI
  • [7] Cealera C., 1992, STUD CERCET MAT, V44, P13
  • [8] POISSON APPROXIMATION FOR DEPENDENT TRIALS
    CHEN, LHY
    [J]. ANNALS OF PROBABILITY, 1975, 3 (03) : 534 - 545
  • [9] L1 BOUNDS FOR ASYMPTOTIC NORMALITY OF META-DEPENDENT SUMS USING STEINS TECHNIQUE
    ERICKSON, RV
    [J]. ANNALS OF PROBABILITY, 1974, 2 (03) : 522 - 529
  • [10] Hall P., 1980, Martingale Limit Theory and Its Application