On the orientational distribution functions in de Vries-type smectic liquid crystals

被引:8
|
作者
Rudquist, Per [1 ]
Osipov, Mikhail A. [2 ]
Giesselmann, Frank [3 ]
机构
[1] Chalmers Univ Technol, Dept Microtechnol & Nanosci, Gothenburg, Sweden
[2] Univ Strathclyde, Dept Math, Glasgow, Lanark, Scotland
[3] Univ Stuttgart, Inst Phys Chem, Stuttgart, Germany
基金
瑞典研究理事会; 美国国家科学基金会;
关键词
Smectic liquid crystals; de Vries smectics; orientational distribution functions; X-ray diffraction; polarised Raman spectroscopy; ORDER-PARAMETER; A-PHASE; C-PHASE; TRANSITION; SCATTERING; MODEL;
D O I
10.1080/02678292.2018.1489985
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In de Vries smectic liquid crystals, the transition from the orthogonal smectic A (SmA) to the tilted smectic C (SmC) phase occurs with essentially no decrease in smectic layer thickness. This unusual behaviour is commonly explained assuming a 'hollow-cone' or 'volcano-like' orientational distribution function (ODF) of rod-like molecules in SmA and the transition to SmC being a pure disorder-order transition in the molecular tilt directions. However, even after 20 years of extensive investigations, the experimental confirmation of this ad hoc model is still inconclusive. While optical and electro-optic studies of many de Vries smectics can be readily explained with the hollow-cone model, X-ray diffraction (XRD) studies as well as many polarised Raman spectroscopy (PRS) studies support a broad Maier-Saupe distribution of a sugarloaf-like shape. We review and summarise X-ray, electro-optic and PRS results on the ODFs in the SmA phases of materials claimed to be of the de Vries type and discuss how seemingly contradicting findings can be true at the same time. In molecules where the core is far from collinear with the long molecular axis, the cores may exhibit a volcano ODF while the molecular axes exhibit a sugarloaf ODF. [GRAPHICS] .
引用
收藏
页码:2097 / 2108
页数:12
相关论文
共 50 条
  • [21] Existence for Korteweg-de Vries-type equation with delay
    Zhihong Zhao
    Erhua Rong
    Xiangkui Zhao
    Advances in Difference Equations, 2012
  • [22] Low transition temperature organosiloxane liquid crystals displaying a de Vries smectic A phase
    Naciri, J
    Carboni, C
    George, AK
    LIQUID CRYSTALS, 2003, 30 (02) : 219 - 225
  • [23] First Examples of de Vries-like Smectic A to Smectic C Phase Transitions in Ionic Liquid Crystals
    Kapernaum, Nadia
    Mueller, Carsten
    Moors, Svenja
    Schlick, M. Christian
    Wuckert, Eugen
    Laschat, Sabine
    Giesselmann, Frank
    CHEMPHYSCHEM, 2016, 17 (24) : 4116 - 4123
  • [24] de Vries behavior in smectic liquid crystals near a biaxiality-induced smectic-A-smectic-C tricritical point
    Saunders, Karl
    PHYSICAL REVIEW E, 2008, 77 (06):
  • [25] Electro-optic characteristics of de Vries tilted smectic liquid crystals:: Analog behavior in the smectic A* and smectic C* phases
    Clark, NA
    Bellini, T
    Shao, RF
    Coleman, D
    Bardon, S
    Link, DR
    Maclennan, JE
    Chen, XH
    Wand, MD
    Walba, DM
    Rudquist, P
    Lagerwall, ST
    APPLIED PHYSICS LETTERS, 2002, 80 (22) : 4097 - 4099
  • [26] Blowup of solutions of a Korteweg-de Vries-type equation
    E. V. Yushkov
    Theoretical and Mathematical Physics, 2012, 172 : 932 - 938
  • [27] Boundary controllability of a Korteweg-de Vries-type Boussinesq system
    Komornik, Vilmos
    Pazoto, Ademir F.
    Vieira, Miguel D. Soto
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (12) : 4478 - 4496
  • [28] Oscillatory Solutions for Lattice Korteweg-de Vries-Type Equations
    Feng, Wei
    Zhao, Song-Lin
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2018, 73 (02): : 91 - 98
  • [29] Topology of Orientational Defects in Confined Smectic Liquid Crystals
    Monderkamp, Paul A.
    Wittmann, Rene
    Cortes, Louis B. G.
    Aarts, Dirk G. A. L.
    Smallenburg, Frank
    Lowen, Hartmut
    PHYSICAL REVIEW LETTERS, 2021, 127 (19)
  • [30] BOND ORIENTATIONAL ORDER IN SMECTIC LIQUID-CRYSTALS
    BRUINSMA, R
    NELSON, DR
    PHYSICAL REVIEW B, 1981, 23 (01) : 402 - 410