A representation for the Drazin inverse of block matrices with a singular generalized Schur complement

被引:10
作者
Li, Xiezhang [1 ]
机构
[1] Georgia So Univ, Dept Math Sci, Statesboro, GA 30460 USA
关键词
Block matrix; Drazin inverse; Group inverse; FORMULAS;
D O I
10.1016/j.amc.2011.02.061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a 2 x 2 block complex square matrix M = [(A)(C) (B)(D)], where A and D are square matrices. Suppose that (I - AA(D))B - O and (I - AA(D)) - O, where A(D) is the Drazin inverse of A. The representations of the Drazin inverse M-D have been studied in the case where the generalized Schur complement, S = A - CA(D)B, is either zero or nonsingular. In this paper, we develop a representation, under certain conditions, for M-D when S is singular and group invertible. Moreover, this formula includes the case where S = O or nonsingular. A numerical example is given to illustrate the result. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:7531 / 7536
页数:6
相关论文
共 22 条
[1]  
Banachiewicz T., 1937, Acta Astron. (Ser. C), V3, P41
[2]  
Ben-Israel A., 2003, Generalized inverses: theory and applications
[3]   GENERALIZED INVERSE FORMULAS USING SCHUR COMPLEMENT [J].
BURNS, F ;
CARLSON, D ;
HAYNSWORTH, E ;
MARKHAM, T .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1974, 26 (02) :254-259
[4]  
Campbell S.T., 1983, Linear Multilinear Algebra, V14, P195, DOI DOI 10.1080/03081088308817556
[5]  
Campbell SL., 1991, Generalized Inverse of Linear Transformations
[6]  
CAMPBELL SL, 1979, GEN INVERSE LINEAR T
[7]   GENERALIZATION OF SCHUR COMPLEMENT BY MEANS OF MOORE-PENROSE INVERSE [J].
CARLSON, D ;
HAYNSWORTH, E ;
MARKHAM, T .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1974, 26 (01) :169-175
[8]   Formulas for the drazin inverse of special block matrices [J].
Castro-González, N ;
Dopazo, E ;
Robles, J .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 174 (01) :252-270
[9]  
Catral M, 2009, ELECTRON J LINEAR AL, V18, P98
[10]   Representations for the Drazin inverse of the sum P plus Q plus R plus S and its applications [J].
Chen, Jianbiao ;
Xu, Zhaoliang ;
Wei, Yimin .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (01) :438-454