Divisors on Mg,g+1 and the Minimal Resolution Conjecture for points on canonical curves

被引:24
作者
Farkas, G
Mustata, M
Popa, M
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2003年 / 36卷 / 04期
关键词
D O I
10.1016/S0012-9593(03)00022-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use geometrically defined divisors on moduli spaces of pointed curves to compute the graded Betti numbers of general sets of points on any nonhyperelliptic canonically embedded curve. This gives a positive answer to the Minimal Resolution Conjecture in the case of canonical curves. But we prove that the conjecture fails on curves of large degree. These results are related to the existence of theta divisors associated to certain stable vector bundles. (C) 2003 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:553 / 581
页数:29
相关论文
共 30 条