On biclique coverings

被引:13
作者
Bezrukova, Sergei [1 ]
Froncek, Dalibor [2 ]
Rosenberg, Steven J. [1 ]
Kovar, Petr [3 ]
机构
[1] Univ Wisconsin Superior Belknap & Catlin, Dept Math & Comp Sci, Superior, WI 54880 USA
[2] Univ Minnesota, Dept Math & Stat, Duluth, MN 55812 USA
[3] Tech Univ Ostrava, Dept Math & Descript Geometry, Ostrava 70833, Czech Republic
关键词
graph coverings; bicliques; Sperner's theorem; graph composition; lexicographic product;
D O I
10.1016/j.disc.2006.11.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It was proved by Froncek, Jerebic, Klavzar, and Kovar that if a complete bipartite graph Kn,n with a perfect matching removed can be covered by k bicliques, then n <= ([(k)(k/2)]). We give a slightly simplified proof and we show that the result is tight. Moreover, we use the result to prove analogous bounds for coverings of some other classes of graphs by bicliques. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:319 / 323
页数:5
相关论文
共 4 条
[1]  
[Anonymous], 1970, J COMBINATORIAL THEO
[2]   ON THE COVERINGS OF GRAPHS [J].
CHUNG, FRK .
DISCRETE MATHEMATICS, 1980, 30 (02) :89-93
[3]   Strong isometric dimension, biclique coverings, and Sperner's theorem [J].
Froncek, Dalibor ;
Jerebic, Janja ;
Klavzar, Sandi ;
Kovar, Petr .
COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (02) :271-275
[4]   Covering a graph with cuts of minimum total size [J].
Füredi, Z ;
Kündgen, A .
DISCRETE MATHEMATICS, 2001, 237 (1-3) :129-148