MRI features can predict EGFR expression in lower grade gliomas: A voxel-based radiomic analysis

被引:112
作者
Li, Yiming [1 ]
Liu, Xing [1 ]
Xu, Kaibin [2 ]
Qian, Zenghui [1 ]
Wang, Kai [3 ]
Fan, Xing [1 ]
Li, Shaowu [1 ]
Wang, Yinyan [3 ,4 ]
Jiang, Tao [1 ]
机构
[1] Capital Med Univ, Beijing Neurosurg Inst, 6 Tiantanxili, Beijing 100050, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
[3] Beijing Tiantan Hosp, Dept Neuroradiol, Beijing, Peoples R China
[4] Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, 6 Tiantanxili, Beijing 100050, Peoples R China
基金
中国国家自然科学基金;
关键词
Radiomics; Lower grade glioma; EGFR; MRI; Prediction; GROWTH-FACTOR RECEPTOR; LABELING PERFUSION MRI; GLIOBLASTOMA; NIMOTUZUMAB; SURVIVAL; BIOMARKERS; TUMORS; P53;
D O I
10.1007/s00330-017-4964-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
To identify the magnetic resonance imaging (MRI) features associated with epidermal growth factor (EGFR) expression level in lower grade gliomas using radiomic analysis. 270 lower grade glioma patients with known EGFR expression status were randomly assigned into training (n=200) and validation (n=70) sets, and were subjected to feature extraction. Using a logistic regression model, a signature of MRI features was identified to be predictive of the EGFR expression level in lower grade gliomas in the training set, and the accuracy of prediction was assessed in the validation set. A signature of 41 MRI features achieved accuracies of 82.5% (area under the curve [AUC] = 0.90) in the training set and 90.0% (AUC = 0.95) in the validation set. This radiomic signature consisted of 25 first-order statistics or related wavelet features (including range, standard deviation, uniformity, variance), one shape and size-based feature (spherical disproportion), and 15 textural features or related wavelet features (including sum variance, sum entropy, run percentage). A radiomic signature allowing for the prediction of the EGFR expression level in patients with lower grade glioma was identified, suggesting that using tumour-derived radiological features for predicting genomic information is feasible. aEuro cent EGFR expression status is an important biomarker for gliomas. aEuro cent EGFR in lower grade gliomas could be predicted using radiogenomic analysis. aEuro cent A logistic regression model is an efficient approach for analysing radiomic features.
引用
收藏
页码:356 / 362
页数:7
相关论文
共 30 条
  • [1] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] The asphericity of the metabolic tumour volume in NSCLC: correlation with histopathology and molecular markers
    Apostolova, Ivayla
    Ego, Kilian
    Steffen, Ingo G.
    Buchert, Ralph
    Wertzel, Heinz
    Achenbach, H. Jost
    Riedel, Sandra
    Schreiber, Jens
    Schultz, Meinald
    Furth, Christian
    Derlin, Thorsten
    Amthauer, Holger
    Hofheinz, Frank
    Kalinski, Thomas
    [J]. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2016, 43 (13) : 2360 - 2373
  • [3] Imaging genomics in cancer research: limitations and promises
    Bai, Harrison X.
    Lee, Ashley M.
    Yang, Li
    Zhang, Paul
    Davatzikos, Christos
    Maris, John M.
    Diskin, Sharon J.
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2016, 89 (1061)
  • [4] Basavaraj C, 2014, CANCER BIOL THER, V10, P673
  • [5] Classifying lower grade glioma cases according to whole genome gene expression
    Chen, Baoshi
    Liang, Tingyu
    Yang, Pei
    Wang, Haoyuan
    Liu, Yanwei
    Yang, Fan
    You, Gan
    [J]. ONCOTARGET, 2016, 7 (45) : 74031 - 74042
  • [6] Combined treatment of Nimotuzumab and rapamycin is effective against temozolomide-resistant human gliomas regardless of the EGFR mutation status
    Chong, Dawn Q.
    Toh, Xin Y.
    Ho, Ivy A. W.
    Sia, Kian C.
    Newman, Jennifer P.
    Yulyana, Yulyana
    Ng, Wai-Hoe
    Lai, Siang H.
    Ho, Mac M. F.
    Dinesh, Nivedh
    Tham, Chee K.
    Lam, Paula Y. P.
    [J]. BMC CANCER, 2015, 15
  • [7] MRI-coupled Fluorescence Tomography Quantifies EGFR Activity in Brain Tumors
    Davis, Scott C.
    Samkoe, Kimberley S.
    O'Hara, Julia A.
    Gibbs-Strauss, Summer L.
    Payne, Hannah L.
    Hoopes, P. Jack
    Paulsen, Keith D.
    Pogue, Brian W.
    [J]. ACADEMIC RADIOLOGY, 2010, 17 (03) : 271 - 276
  • [8] An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging
    Drabycz, Sylvia
    Roldan, Gloria
    de Robles, Paula
    Adler, Daniel
    McIntyre, John B.
    Magliocco, Anthony M.
    Cairncross, J. Gregory
    Mitchell, J. Ross
    [J]. NEUROIMAGE, 2010, 49 (02) : 1398 - 1405
  • [9] ADAM9 Expression Is Associate with Glioma Tumor Grade and Histological Type, and Acts as a Prognostic Factor in Lower-Grade Gliomas
    Fan, Xing
    Wang, Yongheng
    Zhang, Chuanbao
    Liu, Li
    Yang, Sen
    Wang, Yinyan
    Liu, Xing
    Qian, Zenghui
    Fang, Shengyu
    Qiao, Hui
    Jiang, Tao
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (09)
  • [10] Pretreatment Dynamic Susceptibility Contrast MRI Perfusion in Glioblastoma: Prediction of EGFR Gene Amplification
    Gupta, A.
    Young, R. J.
    Shah, A. D.
    Schweitzer, A. D.
    Graber, J. J.
    Shi, W.
    Zhang, Z.
    Huse, J.
    Omuro, A. M. P.
    [J]. CLINICAL NEURORADIOLOGY, 2015, 25 (02) : 143 - 150