MRI features can predict EGFR expression in lower grade gliomas: A voxel-based radiomic analysis

被引:114
作者
Li, Yiming [1 ]
Liu, Xing [1 ]
Xu, Kaibin [2 ]
Qian, Zenghui [1 ]
Wang, Kai [3 ]
Fan, Xing [1 ]
Li, Shaowu [1 ]
Wang, Yinyan [3 ,4 ]
Jiang, Tao [1 ]
机构
[1] Capital Med Univ, Beijing Neurosurg Inst, 6 Tiantanxili, Beijing 100050, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Beijing, Peoples R China
[3] Beijing Tiantan Hosp, Dept Neuroradiol, Beijing, Peoples R China
[4] Capital Med Univ, Beijing Tiantan Hosp, Dept Neurosurg, 6 Tiantanxili, Beijing 100050, Peoples R China
基金
中国国家自然科学基金;
关键词
Radiomics; Lower grade glioma; EGFR; MRI; Prediction; GROWTH-FACTOR RECEPTOR; LABELING PERFUSION MRI; GLIOBLASTOMA; NIMOTUZUMAB; SURVIVAL; BIOMARKERS; TUMORS; P53;
D O I
10.1007/s00330-017-4964-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
To identify the magnetic resonance imaging (MRI) features associated with epidermal growth factor (EGFR) expression level in lower grade gliomas using radiomic analysis. 270 lower grade glioma patients with known EGFR expression status were randomly assigned into training (n=200) and validation (n=70) sets, and were subjected to feature extraction. Using a logistic regression model, a signature of MRI features was identified to be predictive of the EGFR expression level in lower grade gliomas in the training set, and the accuracy of prediction was assessed in the validation set. A signature of 41 MRI features achieved accuracies of 82.5% (area under the curve [AUC] = 0.90) in the training set and 90.0% (AUC = 0.95) in the validation set. This radiomic signature consisted of 25 first-order statistics or related wavelet features (including range, standard deviation, uniformity, variance), one shape and size-based feature (spherical disproportion), and 15 textural features or related wavelet features (including sum variance, sum entropy, run percentage). A radiomic signature allowing for the prediction of the EGFR expression level in patients with lower grade glioma was identified, suggesting that using tumour-derived radiological features for predicting genomic information is feasible. aEuro cent EGFR expression status is an important biomarker for gliomas. aEuro cent EGFR in lower grade gliomas could be predicted using radiogenomic analysis. aEuro cent A logistic regression model is an efficient approach for analysing radiomic features.
引用
收藏
页码:356 / 362
页数:7
相关论文
共 30 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   The asphericity of the metabolic tumour volume in NSCLC: correlation with histopathology and molecular markers [J].
Apostolova, Ivayla ;
Ego, Kilian ;
Steffen, Ingo G. ;
Buchert, Ralph ;
Wertzel, Heinz ;
Achenbach, H. Jost ;
Riedel, Sandra ;
Schreiber, Jens ;
Schultz, Meinald ;
Furth, Christian ;
Derlin, Thorsten ;
Amthauer, Holger ;
Hofheinz, Frank ;
Kalinski, Thomas .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2016, 43 (13) :2360-2373
[3]   Imaging genomics in cancer research: limitations and promises [J].
Bai, Harrison X. ;
Lee, Ashley M. ;
Yang, Li ;
Zhang, Paul ;
Davatzikos, Christos ;
Maris, John M. ;
Diskin, Sharon J. .
BRITISH JOURNAL OF RADIOLOGY, 2016, 89 (1061)
[4]  
Basavaraj C, 2014, CANCER BIOL THER, V10, P673
[5]   Classifying lower grade glioma cases according to whole genome gene expression [J].
Chen, Baoshi ;
Liang, Tingyu ;
Yang, Pei ;
Wang, Haoyuan ;
Liu, Yanwei ;
Yang, Fan ;
You, Gan .
ONCOTARGET, 2016, 7 (45) :74031-74042
[6]   Combined treatment of Nimotuzumab and rapamycin is effective against temozolomide-resistant human gliomas regardless of the EGFR mutation status [J].
Chong, Dawn Q. ;
Toh, Xin Y. ;
Ho, Ivy A. W. ;
Sia, Kian C. ;
Newman, Jennifer P. ;
Yulyana, Yulyana ;
Ng, Wai-Hoe ;
Lai, Siang H. ;
Ho, Mac M. F. ;
Dinesh, Nivedh ;
Tham, Chee K. ;
Lam, Paula Y. P. .
BMC CANCER, 2015, 15
[7]   MRI-coupled Fluorescence Tomography Quantifies EGFR Activity in Brain Tumors [J].
Davis, Scott C. ;
Samkoe, Kimberley S. ;
O'Hara, Julia A. ;
Gibbs-Strauss, Summer L. ;
Payne, Hannah L. ;
Hoopes, P. Jack ;
Paulsen, Keith D. ;
Pogue, Brian W. .
ACADEMIC RADIOLOGY, 2010, 17 (03) :271-276
[8]   An analysis of image texture, tumor location, and MGMT promoter methylation in glioblastoma using magnetic resonance imaging [J].
Drabycz, Sylvia ;
Roldan, Gloria ;
de Robles, Paula ;
Adler, Daniel ;
McIntyre, John B. ;
Magliocco, Anthony M. ;
Cairncross, J. Gregory ;
Mitchell, J. Ross .
NEUROIMAGE, 2010, 49 (02) :1398-1405
[9]   ADAM9 Expression Is Associate with Glioma Tumor Grade and Histological Type, and Acts as a Prognostic Factor in Lower-Grade Gliomas [J].
Fan, Xing ;
Wang, Yongheng ;
Zhang, Chuanbao ;
Liu, Li ;
Yang, Sen ;
Wang, Yinyan ;
Liu, Xing ;
Qian, Zenghui ;
Fang, Shengyu ;
Qiao, Hui ;
Jiang, Tao .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (09)
[10]   Pretreatment Dynamic Susceptibility Contrast MRI Perfusion in Glioblastoma: Prediction of EGFR Gene Amplification [J].
Gupta, A. ;
Young, R. J. ;
Shah, A. D. ;
Schweitzer, A. D. ;
Graber, J. J. ;
Shi, W. ;
Zhang, Z. ;
Huse, J. ;
Omuro, A. M. P. .
CLINICAL NEURORADIOLOGY, 2015, 25 (02) :143-150