Role of electrochemically driven Cu nanograins in CuGa2 electrode

被引:27
作者
Lee, Kyu T.
Jung, Yoon S.
Kwon, Ji Y.
Kim, Jun H.
Oh, Seung M. [1 ]
机构
[1] Seoul Natl Univ, Dept Chem & Biol Engn, Seoul 151744, South Korea
关键词
D O I
10.1021/cm702181m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Upon lithiation, the active (Ga) and inactive component (Cu) in a binary intermetallic CuGa2 electrode are converted to nanograins (< 50 nm) of LixGa and metallic Cu, respectively. It was found that the Cu nanograins are not idling as an inactive ingredient but have a strong influence on the thermodynamic and kinetic properties of LixGa phases through a partial bonding to Ga atoms of LixGa (Cu -> Ga - Li). The Li.,Ga phase diagram is altered by the presence of Cu nanograins, eloquently demonstrating that the surface energy becomes more important than internal energy in controlling thermodynamics of nanosized materials. The lithiation rate is slower than that for pure Ga electrode because of activation energy needed for bond cleavage of the partial bonding. The delithiation rate. capability is, however, exceptionally good; the capacity at 26 C amounts to 91% of that at 0.13 C, which is indebted to a weakening in the Ga - Li bond by the Cu -> Ga partial bonding.
引用
收藏
页码:447 / 453
页数:7
相关论文
共 45 条
[1]   TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte [J].
Armstrong, Graham ;
Armstrong, A. Robert ;
Bruce, Peter G. ;
Reale, Priscilla ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2006, 18 (19) :2597-+
[2]   Combinatorial study of Sn1-xCox (0 &lt; x &lt; 0.6) and [Sn0.55Co0.45]1-yCy (0 &lt; y &lt; 0.5) alloy negative electrode materials for Li-ion batteries [J].
Dahn, JR ;
Mar, RE ;
Abouzeid, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (02) :A361-A365
[3]   Bismuth-induced embrittlement of copper grain boundaries [J].
Duscher, G ;
Chisholm, MF ;
Alber, U ;
Rühle, M .
NATURE MATERIALS, 2004, 3 (09) :621-626
[4]   Photonic crystal structures as a basis for a three-dimensionally interpenetrating electrochemical-cell system [J].
Ergang, Nicholas S. ;
Lytle, Justin C. ;
Lee, Kyu T. ;
Oh, Seung M. ;
Smyrl, William H. ;
Stein, Andreas .
ADVANCED MATERIALS, 2006, 18 (13) :1750-+
[5]  
Fehlner F.P., 1970, OXID MET, V2, P59, DOI DOI 10.1007/BF00603582
[6]   Al-M (M = Cr, Fe, Mn, Ni) thin-film negative electrode materials [J].
Fleischauer, MD ;
Obrovac, MN ;
McGraw, JD ;
Dunlap, RA ;
Topple, JM ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (03) :A484-A491
[7]   Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities [J].
Graetz, J ;
Ahn, CC ;
Yazami, R ;
Fultz, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (05) :A698-A702
[8]   In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon [J].
Hatchard, TD ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (06) :A838-A842
[9]   High lithium electroactivity of nanometer-sized rutile TiO2 [J].
Hu, Yong-Sheng ;
Kienle, Lorenz ;
Guo, Yu- Guo ;
Maier, Joachim .
ADVANCED MATERIALS, 2006, 18 (11) :1421-+
[10]  
Inaba M, 1997, J RAMAN SPECTROSC, V28, P613, DOI 10.1002/(SICI)1097-4555(199708)28:8<613::AID-JRS138>3.0.CO