K-theory of locally compact modules over orders

被引:2
作者
Braunling, Oliver [1 ]
Henrard, Ruben [2 ]
Van Roosmalen, Adam-Christiaan [2 ]
机构
[1] Albert Ludwigs Univ Freiburg, Inst Math, D-79104 Freiburg, Germany
[2] Univ Hasselt, Dept WNI, Campus Diepenbeek, B-3590 Diepenbeek, Belgium
关键词
D O I
10.1007/s11856-021-2247-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a quick approach to computing the K-theory of the category of locally compact modules over any order in a semisimple DOUBLE-STRUCK CAPITAL Q-algebra. We obtain the K-theory by first quotienting out the compact modules and subsequently the vector modules. Our proof exploits the fact that the pair (vector modules plus compact modules, discrete modules) becomes a torsion theory after we quotient out the finite modules. Treating these quotients as exact categories is possible due to a recent localization formalism.
引用
收藏
页码:315 / 333
页数:19
相关论文
共 22 条
[1]   K-theoretic obstructions to bounded t-structures [J].
Antieau, Benjamin ;
Gepner, David ;
Heller, Jeremiah .
INVENTIONES MATHEMATICAE, 2019, 216 (01) :241-300
[2]   On the automorphic side of the K-theoretic Artin symbol [J].
Arndt, Peter ;
Braunling, Oliver .
SELECTA MATHEMATICA-NEW SERIES, 2019, 25 (03)
[3]   One-sided exact categories [J].
Bazzoni, Silvana ;
Crivei, Septimiu .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (02) :377-391
[4]   A universal characterization of higher algebraic K-theory [J].
Blumberg, Andrew J. ;
Gepner, David ;
Tabuada, Goncalo .
GEOMETRY & TOPOLOGY, 2013, 17 (02) :733-838
[5]  
Braunling O, 2019, NEW YORK J MATH, V25, P1112
[6]   Exact categories [J].
Buehler, Theo .
EXPOSITIONES MATHEMATICAE, 2010, 28 (01) :1-69
[7]  
Burns M., 2001, Doc. Math., V6, P501
[8]  
Clausen, K THEORETIC APPROACH
[9]   Homological algebra with locally compact abelian groups [J].
Hoffmann, Norbert ;
Spitzweck, Markus .
ADVANCES IN MATHEMATICS, 2007, 212 (02) :504-524
[10]   CHAIN COMPLEXES AND STABLE CATEGORIES [J].
KELLER, B .
MANUSCRIPTA MATHEMATICA, 1990, 67 (04) :379-417