Integrating plant molecular farming and materials research for next-generation vaccines

被引:94
作者
Chung, Young Hun [1 ]
Church, Derek [2 ]
Koellhoffer, Edward C. [3 ]
Osota, Elizabeth [2 ,4 ]
Shukla, Sourabh [2 ]
Rybicki, Edward P. [5 ]
Pokorski, Jonathan K. [2 ,6 ,7 ]
Steinmetz, Nicole F. [1 ,2 ,3 ,6 ,7 ,8 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Radiol, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Biomed Sci Program, La Jolla, CA 92093 USA
[5] Univ Cape Town, Dept Mol & Cell Biol, Cape Town, South Africa
[6] Univ Calif San Diego, Inst Mat Discovery & Design, La Jolla, CA 92093 USA
[7] Univ Calif San Diego, Ctr Nanoimmuno Engn, La Jolla, CA 92093 USA
[8] Univ Calif San Diego, Moores Canc Ctr, La Jolla, CA 92093 USA
基金
新加坡国家研究基金会; 英国医学研究理事会;
关键词
NATIONAL IMMUNIZATION CAMPAIGN; CONTROLLED DRUG-DELIVERY; MIDDLE-INCOME COUNTRIES; ORAL POLIO VACCINE; CELL CULTURE; COLD-CHAIN; BIOMEDICAL APPLICATIONS; THERMOSTABLE VACCINES; RECOMBINANT PROTEINS; POLYMER MICRONEEDLES;
D O I
10.1038/s41578-021-00399-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Biologics - medications derived from a biological source - are increasingly used as pharmaceuticals, for example, as vaccines. Biologics are usually produced in bacterial, mammalian or insect cells. Alternatively, plant molecular farming, that is, the manufacture of biologics in plant cells, transgenic plants and algae, offers a cheaper and easily adaptable strategy for the production of biologics, in particular, in low-resource settings. In this Review, we discuss current vaccination challenges, such as cold chain requirements, and highlight how plant molecular farming in combination with advanced materials can be applied to address these challenges. The production of plant viruses and virus-based nanotechnologies in plants enables low-cost and regional fabrication of thermostable vaccines. We also highlight key new vaccine delivery technologies, including microneedle patches and material platforms for intranasal and oral delivery. Finally, we provide an outlook of future possibilities for plant molecular farming of next-generation vaccines and biologics. Cold chain requirements, distribution challenges and high costs limit the global rollout of many vaccines. This Review discusses plant molecular farming in combination with advanced materials strategies as a new platform for the local production of thermostable vaccines and other biologics.
引用
收藏
页码:372 / 388
页数:17
相关论文
共 198 条
[1]   Intradermal immunization using coated microneedles containing an immunoadjuvant [J].
Andrianov, Alexander K. ;
Mutwiri, George .
VACCINE, 2012, 30 (29) :4355-4360
[2]  
[Anonymous], 2012, Med Lett Drugs Ther, V54, P56
[3]   Expression of the rabies virus nucleoprotein in plants at high-levels and evaluation of immune responses in mice [J].
Arango, Irene Perea ;
Rubio, Elizabeth Loza ;
Anaya, Edith Rojas ;
Flores, Teresa Olivera ;
de la Vara, Luis Gonzalez ;
Lim, Miguel Angel Gomez .
PLANT CELL REPORTS, 2008, 27 (04) :677-685
[4]   Plant-produced Crimean-Congo haemorrhagic fever virus nucleoprotein for use in indirect ELISA [J].
Atkinson, Richard ;
Burt, Felicity ;
Rybicki, Edward P. ;
Meyers, Ann E. .
JOURNAL OF VIROLOGICAL METHODS, 2016, 236 :170-177
[5]   Preclinical and first-in-human evaluation of PRX-105, a PEGylated, plant-derived, recombinant human acetylcholinesterase-R [J].
Atsmon, Jacob ;
Brill-Almon, Einat ;
Nadri-Shay, Carmit ;
Chertkoff, Raul ;
Alon, Sari ;
Shaikevich, Dimitri ;
Volokhov, Inna ;
Haim, Kirsten Y. ;
Bartfeld, Daniel ;
Shulman, Avidor ;
Ruderfer, Ilya ;
Ben-Moshe, Tehila ;
Shilovitzky, Orit ;
Soreq, Hermona ;
Shaaltiel, Yoseph .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2015, 287 (03) :202-209
[6]   Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays [J].
Bachy, Veronique ;
Hervouet, Catherine ;
Becker, Pablo D. ;
Chorro, Laurent ;
Carlin, Leo M. ;
Herath, Shanthi ;
Papagatsias, Timos ;
Barbaroux, Jean-Baptiste ;
Oh, Sea-Jin ;
Benlahrech, Adel ;
Athanasopoulos, Takis ;
Dickson, George ;
Patterson, Steven ;
Kwon, Sung-Yun ;
Geissmann, Frederic ;
Klavinskis, Linda S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (08) :3041-3046
[7]   Cell factories for insulin production [J].
Baeshen, Nabih A. ;
Baeshen, Mohammed N. ;
Sheikh, Abdullah ;
Bora, Roop S. ;
Ahmed, Mohamed Morsi M. ;
Ramadan, Hassan A. I. ;
Saini, Kulvinder Singh ;
Redwan, Elrashdy M. .
MICROBIAL CELL FACTORIES, 2014, 13
[8]   Uniject(R) as a delivery system for the once-a-month injectable contraceptive Cyclofem(R) in Brazil [J].
Bahamondes, L ;
Marchi, NM ;
Cristofoletti, MD ;
Nakagava, HM ;
Pellini, E ;
Araujo, F ;
Rubin, J .
CONTRACEPTION, 1996, 53 (02) :115-119
[9]   Virus-based pharmaceutical production in plants: an opportunity to reduce health problems in Africa [J].
Bamogo, Pingdwende Kader Aziz ;
Brugidou, Christophe ;
Sereme, Drissa ;
Tiendrebeogo, Fidele ;
Djigma, Florencia Wendkuuni ;
Simpore, Jacques ;
Lacombe, Severine .
VIROLOGY JOURNAL, 2019, 16 (01)
[10]   Viral contamination in biologic manufacture and implications for emerging therapies [J].
Barone, Paul W. ;
Wiebe, Michael E. ;
Leung, James C. ;
Hussein, Islam T. M. ;
Keumurian, Flora J. ;
Bouressa, James ;
Brussel, Audrey ;
Chen, Dayue ;
Chong, Ming ;
Dehghani, Houman ;
Gerentes, Lionel ;
Gilbert, James ;
Gold, Dan ;
Kiss, Robert ;
Kreil, Thomas R. ;
Labatut, Rene ;
Li, Yuling ;
Muellberg, Juergen ;
Mallet, Laurent ;
Menzel, Christian ;
Moody, Mark ;
Monpoeho, Serge ;
Murphy, Marie ;
Plavsic, Mark ;
Roth, Nathan J. ;
Roush, David ;
Ruffing, Michael ;
Schicho, Richard ;
Snyder, Richard ;
Stark, Daniel ;
Zhang, Chun ;
Wolfrum, Jacqueline ;
Sinskey, Anthony J. ;
Springs, Stacy L. .
NATURE BIOTECHNOLOGY, 2020, 38 (05) :563-572