Made for "anchorin": Kv7.2/7.3 (KCNQ2/KCNQ3) channels and the modulation of neuronal excitability in vertebrate axons

被引:58
作者
Cooper, Edward C. [1 ]
机构
[1] Baylor Coll Med, Houston, TX 77030 USA
关键词
Action potential; M-current; IKS; Benign familial neonatal seizures; Excitozone; FAMILIAL NEONATAL CONVULSIONS; GATED POTASSIUM CHANNELS; OUTER HAIR-CELLS; K+ CHANNEL; ION CHANNELS; MOLECULAR EVOLUTION; TRANSMITTER RELEASE; SURFACE EXPRESSION; INITIAL SEGMENT; KCNQ CHANNELS;
D O I
10.1016/j.semcdb.2010.10.001
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Kv7.2 and Kv7.3 (encoded by KCNQ2 and KCNQ3) are homologous subunits forming a widely expressed neuronal voltage-gated K+ (Kv) channel. Hypomorphic mutations in either KCNQ2 or KCNQ3 cause a highly penetrant, though transient, human phenotype-epilepsy during the first months of life. Some KCNQ2 mutations also cause involuntary muscle rippling, or myokymia, which is indicative of motoneuron axon hyperexcitability. Kv7.2 and Kv7.3 are concentrated at axonal initial segments (AISs), and at nodes of Ranvier in the central and peripheral nervous system. Kv7.2 and Kv7.3 share a novel similar to 80 residue C-terminal domain bearing an "anchor" motif, which interacts with ankyrin-G and is required for channel AIS (and likely, nodal) localization. This domain includes the sequence IAEGES/TDTD, which is analogous (not homologous) to the ankyrin-G interaction motif of voltage-gated Na+ (NaV) channels. The KCNQ subfamily is evolutionarily ancient, with two genes (KCNQ1 and KCNQ5) persisting as orthologues in extant bilaterian animals from worm to man. However, KCNQ2 and KCNQ3 arose much more recently, in the interval between the divergence of extant jawless and jawed vertebrates. This is precisely the interval during which myelin and saltatory conduction evolved. The natural selection for KCNQ2 and KCNQ3 appears to hinge on these subunits' unique ability to be coordinately localized with NaV channels by ankyrin-G, and the resulting enhancement in the reliability of neuronal excitability. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:185 / 192
页数:8
相关论文
共 83 条
[71]   The KCNQ5 potassium channel mediates a component of the afterhyperpolarization current in mouse hippocampus [J].
Tzingounis, Anastassios V. ;
Heidenreich, Matthias ;
Kharkovets, Tatjana ;
Spitzmaul, Guillermo ;
Jensen, Henrik S. ;
Nicoll, Roger A. ;
Jentsch, Thomas J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (22) :10232-10237
[72]   Kv7/KCNQ/M-channels in rat glutamatergic hippocampal axons and their role in regulation of excitability and transmitter release [J].
Vervaeke, K. ;
Gu, N. ;
Agdestein, C. ;
Hu, H. ;
Storm, J. F. .
JOURNAL OF PHYSIOLOGY-LONDON, 2006, 576 (01) :235-256
[73]   KCNQ2 and KCNQ3 potassium channel subunits: Molecular correlates of the M-channel [J].
Wang, HS ;
Pan, ZM ;
Shi, WM ;
Brown, BS ;
Wymore, RS ;
Cohen, IS ;
Dixon, JE ;
McKinnon, D .
SCIENCE, 1998, 282 (5395) :1890-1893
[74]   Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias [J].
Wang, Q ;
Curran, ME ;
Splawski, I ;
Burn, TC ;
Millholland, JM ;
VanRaay, TJ ;
Shen, J ;
Timothy, KW ;
Vincent, GM ;
deJager, T ;
Schwartz, PJ ;
Towbin, JA ;
Moss, AJ ;
Atkinson, DL ;
Landes, GM ;
Connors, TD ;
Keating, MT .
NATURE GENETICS, 1996, 12 (01) :17-23
[75]   KCNQ-like potassium channels in Caenorhabditis elegans -: Conserved properties and modulation [J].
Wei, AD ;
Butler, A ;
Salkoff, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (22) :21337-21345
[76]   Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations [J].
Wuttke, T. V. ;
Jurkat-Rott, K. ;
Paulus, W. ;
Garncarek, M. ;
Lehmann-Horn, F. ;
Lerche, H. .
NEUROLOGY, 2007, 69 (22) :2045-2053
[77]   Activation of Kv7 (KCNQ) voltage-gated potassium channels by synthetic compounds [J].
Xiong, Qiaojie ;
Gao, Zhaobing ;
Wang, Wei ;
Li, Min .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2008, 29 (02) :99-107
[78]   ASSEMBLY OF VOLTAGE-GATED POTASSIUM CHANNELS - CONSERVED HYDROPHILIC MOTIFS DETERMINE SUBFAMILY-SPECIFIC INTERACTIONS BETWEEN THE ALPHA-SUBUNITS [J].
XU, J ;
YU, WF ;
JAN, YN ;
JAN, LY ;
LI, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (42) :24761-24768
[79]  
YU FH, 2004, SCI STKE
[80]   Axo-somatic and apical dendritic Kv7/M channels differentially regulate the intrinsic excitability of adult rat CA1 pyramidal cells [J].
Yue, Cuiyong ;
Yaari, Yoel .
JOURNAL OF NEUROPHYSIOLOGY, 2006, 95 (06) :3480-3495