Made for "anchorin": Kv7.2/7.3 (KCNQ2/KCNQ3) channels and the modulation of neuronal excitability in vertebrate axons

被引:55
作者
Cooper, Edward C. [1 ]
机构
[1] Baylor Coll Med, Houston, TX 77030 USA
关键词
Action potential; M-current; IKS; Benign familial neonatal seizures; Excitozone; FAMILIAL NEONATAL CONVULSIONS; GATED POTASSIUM CHANNELS; OUTER HAIR-CELLS; K+ CHANNEL; ION CHANNELS; MOLECULAR EVOLUTION; TRANSMITTER RELEASE; SURFACE EXPRESSION; INITIAL SEGMENT; KCNQ CHANNELS;
D O I
10.1016/j.semcdb.2010.10.001
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Kv7.2 and Kv7.3 (encoded by KCNQ2 and KCNQ3) are homologous subunits forming a widely expressed neuronal voltage-gated K+ (Kv) channel. Hypomorphic mutations in either KCNQ2 or KCNQ3 cause a highly penetrant, though transient, human phenotype-epilepsy during the first months of life. Some KCNQ2 mutations also cause involuntary muscle rippling, or myokymia, which is indicative of motoneuron axon hyperexcitability. Kv7.2 and Kv7.3 are concentrated at axonal initial segments (AISs), and at nodes of Ranvier in the central and peripheral nervous system. Kv7.2 and Kv7.3 share a novel similar to 80 residue C-terminal domain bearing an "anchor" motif, which interacts with ankyrin-G and is required for channel AIS (and likely, nodal) localization. This domain includes the sequence IAEGES/TDTD, which is analogous (not homologous) to the ankyrin-G interaction motif of voltage-gated Na+ (NaV) channels. The KCNQ subfamily is evolutionarily ancient, with two genes (KCNQ1 and KCNQ5) persisting as orthologues in extant bilaterian animals from worm to man. However, KCNQ2 and KCNQ3 arose much more recently, in the interval between the divergence of extant jawless and jawed vertebrates. This is precisely the interval during which myelin and saltatory conduction evolved. The natural selection for KCNQ2 and KCNQ3 appears to hinge on these subunits' unique ability to be coordinately localized with NaV channels by ankyrin-G, and the resulting enhancement in the reliability of neuronal excitability. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:185 / 192
页数:8
相关论文
共 83 条
  • [1] Evolution of spectrin function in cytoskeletal and membrane networks
    Baines, Anthony J.
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 2009, 37 : 796 - 803
  • [2] Homomeric and Heteromeric Assembly of KCNQ (Kv7) K+ Channels Assayed by Total Internal Reflection Fluorescence/Fluorescence Resonance Energy Transfer and Patch Clamp Analysis
    Bal, Manjot
    Zhang, Jie
    Zaika, Oleg
    Hernandez, Ciria C.
    Shapiro, Mark S.
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (45) : 30668 - 30676
  • [3] A potassium channel mutation in neonatal human epilepsy
    Biervert, C
    Schroeder, BC
    Kubisch, C
    Berkovic, SF
    Propping, P
    Jentsch, TJ
    Steinlein, OK
    [J]. SCIENCE, 1998, 279 (5349) : 403 - 406
  • [4] M-CURRENTS - AN UPDATE
    BROWN, D
    [J]. TRENDS IN NEUROSCIENCES, 1988, 11 (07) : 294 - 299
  • [5] MUSCARINIC SUPPRESSION OF A NOVEL VOLTAGE-SENSITIVE K+ CURRENT IN A VERTEBRATE NEURON
    BROWN, DA
    ADAMS, PR
    [J]. NATURE, 1980, 283 (5748) : 673 - 676
  • [6] EPISODIC ATAXIA MYOKYMIA SYNDROME IS ASSOCIATED WITH POINT MUTATIONS IN THE HUMAN POTASSIUM CHANNEL GENE, KCNA1
    BROWNE, DL
    GANCHER, ST
    NUTT, JG
    BRUNT, ERP
    SMITH, EA
    KRAMER, P
    LITT, M
    [J]. NATURE GENETICS, 1994, 8 (02) : 136 - 140
  • [7] EVOLUTION OF MYELIN SHEATHS - BOTH LAMPREY AND HAGFISH LACK MYELIN
    BULLOCK, TH
    MOORE, JK
    FIELDS, RD
    [J]. NEUROSCIENCE LETTERS, 1984, 48 (02) : 145 - 148
  • [8] Excitability of human axons
    Burke, D
    Kiernan, MC
    Bostock, H
    [J]. CLINICAL NEUROPHYSIOLOGY, 2001, 112 (09) : 1575 - 1585
  • [9] Molecular evolution of the ankyrin gene family
    Cai, XJ
    Zhang, YH
    [J]. MOLECULAR BIOLOGY AND EVOLUTION, 2006, 23 (03) : 550 - 558
  • [10] A Pore Residue of the KCNQ3 Potassium M-Channel Subunit Controls Surface Expression
    Camilo Gomez-Posada, Juan
    Etxeberria, Ainhoa
    Roura-Ferrer, Meritxell
    Areso, Pilar
    Masin, Marianela
    Murrell-Lagnado, Ruth D.
    Villarroel, Alvaro
    [J]. JOURNAL OF NEUROSCIENCE, 2010, 30 (27) : 9316 - 9323