A metagenomics workflow for SARS-CoV-2 identification, co-pathogen detection, and overall diversity

被引:9
作者
Castaneda-Mogollon, Daniel [1 ,2 ,3 ]
Kamaliddin, Claire [1 ,2 ,3 ]
Oberding, Lisa [1 ,2 ,3 ]
Liu, Yan [1 ,2 ,3 ]
Mohon, Abu Naser [1 ,2 ,3 ]
Faridi, Rehan Mujeeb [4 ,5 ,6 ]
Khan, Faisal [4 ,5 ,6 ]
Pillai, Dylan R. [1 ,2 ,3 ,4 ]
机构
[1] Univ Calgary, Cumming Sch Med, Dept Pathol & Lab Med, Calgary, AB, Canada
[2] Univ Calgary, Cumming Sch Med, Dept Microbiol Immunol & Infect Dis, Calgary, AB, Canada
[3] Univ Calgary, Calvin Phoebe & Joan Snyder Inst Chron Dis, Calgary, AB, Canada
[4] Alberta Precis Labs, Diagnost & Sci Ctr, Calgary, AB, Canada
[5] Univ Calgary, Hematol Translat Lab, Calgary, AB, Canada
[6] Univ Calgary, Arnie Charbonneau Canc Inst, Calgary, AB, Canada
基金
加拿大健康研究院;
关键词
Metagenomics; SARS-CoV-2; COVID-19; Variants of Concern; Variants of Interest; COVID-19;
D O I
10.1016/j.jcv.2021.105025
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
An unbiased metagenomics approach to virus identification can be essential in the initial phase of a pandemic. Better molecular surveillance strategies are needed for the detection of SARS-CoV-2 variants of concern and potential co-pathogens triggering respiratory symptoms. Here, a metagenomics workflow was developed to identify the metagenome diversity by SARS-CoV-2 diagnosis (n(positive) = 65; n(negative) = 60), symptomatology status (n(symptomatic) = 71; n(asymptomatic) = 54) and anatomical swabbing site (n(nasopharyngeal) = 96; n(throat) = 29) in 125 individuals. Furthermore, the workflow was able to identify putative respiratory co-pathogens, and the SARS-CoV-2 lineage across 29 samples. The diversity analysis showed a significant shift in the DNA-metagenome by symptomatology status and anatomical swabbing site. Additionally, metagenomic diversity differed between SARS-CoV-2 infected and uninfected asymptomatic individuals. While 31 co-pathogens were identified in SARSCoV-2 infected patients, no significant increase in pathogen or associated reads were noted when compared to SARS-CoV-2 negative patients. The Alpha SARS-CoV-2 VOC and 2 variants of interest (Zeta) were successfully identified for the first time using a clinical metagenomics approach. The metagenomics pipeline showed a sensitivity of 86% and a specificity of 72% for the detection of SARS-CoV-2. Clinical metagenomics can be employed to identify SARS-CoV-2 variants and respiratory co-pathogens potentially contributing to COVID-19 symptoms. The overall diversity analysis suggests a complex set of microorganisms with different genomic abundance profiles in SARS-CoV-2 infected patients compared to healthy controls. More studies are needed to correlate severity of COVID-19 disease in relation to potential disbyosis in the upper respiratory tract. A metagenomics approach is particularly useful when novel pandemic pathogens emerge.
引用
收藏
页数:10
相关论文
共 29 条
[1]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[2]  
cov-lineages/pangolin, COV LIN
[3]   Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England [J].
Davies, Nicholas G. ;
Abbott, Sam ;
Barnard, Rosanna C. ;
Jarvis, Christopher, I ;
Kucharski, Adam J. ;
Munday, James D. ;
Pearson, Carl A. B. ;
Russell, Timothy W. ;
Tully, Damien C. ;
Washburne, Alex D. ;
Wenseleers, Tom ;
Gimma, Amy ;
Waites, William ;
Wong, Kerry L. M. ;
van Zandvoort, Kevin ;
Silverman, Justin D. ;
Diaz-Ordaz, Karla ;
Keogh, Ruth ;
Eggo, Rosalind M. ;
Funk, Sebastian ;
Jit, Mark ;
Atkins, Katherine E. ;
Edmunds, W. John .
SCIENCE, 2021, 372 (6538) :149-+
[4]   Nasopharyngeal Microbiota Profiling of SARS-CoV-2 Infected Patients [J].
De Maio, Flavio ;
Posteraro, Brunella ;
Ponziani, Francesca Romana ;
Cattani, Paola ;
Gasbarrini, Antonio ;
Sanguinetti, Maurizio .
BIOLOGICAL PROCEDURES ONLINE, 2020, 22 (01)
[5]   Metagenomic sequencing with spiked primer enrichment for viral diagnostics and genomic surveillance [J].
Deng, Xianding ;
Achari, Asmeeta ;
Federman, Scot ;
Yu, Guixia ;
Somasekar, Sneha ;
Bartolo, Ines ;
Yagi, Shigeo ;
Mbala-Kingebeni, Placide ;
Kapetshi, Jimmy ;
Ahuka-Mundeke, Steve ;
Muyembe-Tamfum, Jean-Jacques ;
Ahmed, Asim A. ;
Ganesh, Vijay ;
Tamhankar, Manasi ;
Patterson, Jean L. ;
Ndembi, Nicaise ;
Mbanya, Dora ;
Kaptue, Lazare ;
McArthur, Carole ;
Munoz-Medina, Jose E. ;
Gonzalez-Bonilla, Cesar R. ;
Lopez, Susana ;
Arias, Carlos F. ;
Arevalo, Shaun ;
Miller, Steve ;
Stone, Mars ;
Busch, Michael ;
Hsieh, Kristina ;
Messenger, Sharon ;
Wadford, Debra A. ;
Rodgers, Mary ;
Cloherty, Gavin ;
Faria, Nuno R. ;
Theze, Julien ;
Pybus, Oliver G. ;
Neto, Zoraima ;
Morais, Joana ;
Taveira, Nuno ;
Hackett, John R. ;
Chiu, Charles Y. .
NATURE MICROBIOLOGY, 2020, 5 (03) :443-454
[6]   STAR: ultrafast universal RNA-seq aligner [J].
Dobin, Alexander ;
Davis, Carrie A. ;
Schlesinger, Felix ;
Drenkow, Jorg ;
Zaleski, Chris ;
Jha, Sonali ;
Batut, Philippe ;
Chaisson, Mark ;
Gingeras, Thomas R. .
BIOINFORMATICS, 2013, 29 (01) :15-21
[7]   The diagnostic value of metagenomic next-generation sequencing in infectious diseases [J].
Duan, Hongxia ;
Li, Xuan ;
Mei, Aihong ;
Li, Ping ;
Liu, Yang ;
Li, Xiaofeng ;
Li, Weiwei ;
Wang, Changhui ;
Xie, Shuanshuan .
BMC INFECTIOUS DISEASES, 2021, 21 (01)
[8]   A comprehensive review of COVID-19 characteristics [J].
Esakandari, Hanie ;
Nabi-Afjadi, Mohsen ;
Fakkari-Afjadi, Javad ;
Farahmandian, Navid ;
Miresmaeili, Seyed-Mohsen ;
Bahreini, Elham .
BIOLOGICAL PROCEDURES ONLINE, 2020, 22 (01)
[9]  
Fass E., HISPIKE HIGH THROUGH
[10]  
Han Y., 2020, MEDRXIV, p2008202020144014, DOI [10.1101/2020.08.20.20144014, DOI 10.1101/2020.08.20.20144014]