Novel reliability evaluation method combining active learning kriging and adaptive weighted importance sampling

被引:7
|
作者
Tang, Chenghu [1 ]
Zhang, Feng [2 ]
Zhang, Jianhua [1 ]
Lv, Yi [1 ]
Wang, Gangfeng [3 ]
机构
[1] Xian Aeronaut Inst, Sch Aerocraft, Xian 710077, Peoples R China
[2] Northwestern Polytech Univ, Sch Mech Civil Engn & Architecture, Xian 710129, Peoples R China
[3] Changan Univ, Sch Construct Machinery, Inst Smart Mfg Syst Engn, Xian 710064, Peoples R China
关键词
Reliability analysis; Adaptive weighted importance sampling; Kriging model; Markov chain; Random variable; SMALL FAILURE PROBABILITIES; VECTOR MACHINE; OPTIMIZATION; DESIGN;
D O I
10.1007/s00158-022-03346-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
To ensure the reliability of complex structures, a novel reliability assessment method combining an active learning kriging (ALK) model with adaptive weighted importance sampling (AWIS), the ALK-AIWS, was proposed in this work. The initial design of experiment (DoE) points were first generated using a modified Metropolis algorithm to construct a kriging metamodel. The Markov chain state seeds were then used as the centers for the importance sampling density function to simulate the training data in a given important region. Thus, the kriging surrogate model was updated using the revised DoE produced by the active learning function, and the failure probability can be evaluated using the entire training data set. An AWIS method was also introduced considering the contribution of the design point to the structural failure probability. Finally, the failure probabilities of several numerical examples and a complex engineering design case were evaluated verifying the efficiency, accuracy, and applicability of the proposed ALK-AWIS method, which provides an alternative approach to reliability evaluation in practical engineering applications.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A system reliability analysis method combining active learning Kriging model with adaptive size of candidate points
    Xufeng Yang
    Caiying Mi
    Dingyuan Deng
    Yongshou Liu
    Structural and Multidisciplinary Optimization, 2019, 60 : 137 - 150
  • [22] An efficient method combining polynomial-chaos kriging and adaptive radial-based importance sampling for reliability analysis
    Pan, Qiu-Jing
    Zhang, Rui-Feng
    Ye, Xin-Yu
    Li, Zheng-Wei
    COMPUTERS AND GEOTECHNICS, 2021, 140
  • [23] An adaptive reliability method combining relevance vector machine and importance sampling
    Zhou Changcong
    Lu Zhenzhou
    Zhang Feng
    Yue Zhufeng
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2015, 52 (05) : 945 - 957
  • [24] An adaptive reliability method combining relevance vector machine and importance sampling
    Zhou Changcong
    Lu Zhenzhou
    Zhang Feng
    Yue Zhufeng
    Structural and Multidisciplinary Optimization, 2015, 52 : 945 - 957
  • [25] System reliability analysis with small failure probability based on active learning Kriging model and multimodal adaptive importance sampling
    Xufeng Yang
    Xin Cheng
    Tai Wang
    Caiying Mi
    Structural and Multidisciplinary Optimization, 2020, 62 : 581 - 596
  • [26] Reliability analysis with stratified importance sampling based on adaptive Kriging
    Xiao, Sinan
    Oladyshkin, Sergey
    Nowak, Wolfgang
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2020, 197 (197)
  • [27] System reliability analysis with small failure probability based on active learning Kriging model and multimodal adaptive importance sampling
    Yang, Xufeng
    Cheng, Xin
    Wang, Tai
    Mi, Caiying
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 62 (02) : 581 - 596
  • [28] A combined projection-outline-based active learning Kriging and adaptive importance sampling method for hybrid reliability analysis with small failure probabilities
    Zhang, Jinhao
    Xiao, Mi
    Gao, Liang
    Chu, Sheng
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 344 : 13 - 33
  • [29] An adaptive method fusing the kriging model and multimodal importance sampling for profust reliability analysis
    Yang, Xufeng
    Cheng, Xin
    Liu, Zeqing
    Wang, Tai
    ENGINEERING OPTIMIZATION, 2022, 54 (11) : 1870 - 1886
  • [30] AKOIS: An adaptive Kriging oriented importance sampling method for structural system reliability analysis
    Zhang, Xufang
    Wang, Lei
    Sorensen, John Dalsgaard
    STRUCTURAL SAFETY, 2020, 82