Fermionic condensate in a conical space with a circular boundary and magnetic flux

被引:30
作者
Bellucci, S. [1 ]
Bezerra de Mello, E. R. [2 ]
Saharian, A. A. [3 ]
机构
[1] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy
[2] Univ Fed Paraiba, Dept Fis, BR-58059970 Joao Pessoa, Paraiba, Brazil
[3] Yerevan State Univ, Dept Phys, Yerevan 0025, Armenia
来源
PHYSICAL REVIEW D | 2011年 / 83卷 / 08期
关键词
CHIRAL-SYMMETRY BREAKING; ELECTRONIC-PROPERTIES; VACUUM POLARIZATION; CASIMIR DENSITIES; SELF-ADJOINTNESS; QUANTUM NUMBERS; FIELDS; CHARGE; MODEL; SCATTERING;
D O I
10.1103/PhysRevD.83.085017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The fermionic condensate is investigated in a (2 + 1)-dimensional conical spacetime in the presence of a circular boundary and a magnetic flux. It is assumed that on the boundary the fermionic field obeys the MIT bag boundary condition. For irregular modes, we consider a special case of boundary conditions at the cone apex, when the MIT bag boundary condition is imposed at a finite radius, which is then taken to zero. The fermionic condensate is a periodic function of the magnetic flux with the period equal to the flux quantum. For both exterior and interior regions, the fermionic condensate is decomposed into boundary-free and boundary-induced parts. Two integral representations are given for the boundary-free part for arbitrary values of the opening angle of the cone and magnetic flux. At distances from the boundary larger than the Compton wavelength of the fermion particle, the condensate decays exponentially, with the decay rate depending on the opening angle of the cone. If the ratio of the magnetic flux to the flux quantum is not a half-integer number for a massless field the boundary-free part in the fermionic condensate vanishes, whereas the boundary-induced part is negative. For half-integer values of the ratio of the magnetic flux to the flux quantum, the irregular mode gives a nonzero contribution to the fermionic condensate in the boundary-free conical space.
引用
收藏
页数:15
相关论文
共 54 条
[1]  
[Anonymous], 2008, GEN ABEL PLANA FORMU
[2]  
*ARXIV, ARXIV07081187
[3]   Induced fermionic current in toroidally compactified spacetimes with applications to cylindrical and toroidal nanotubes [J].
Bellucci, S. ;
Saharian, A. A. ;
Bardeghyan, V. M. .
PHYSICAL REVIEW D, 2010, 82 (06)
[4]   Fermionic Casimir densities in toroidally compactified spacetimes with applications to nanotubes [J].
Bellucci, S. ;
Saharian, A. A. .
PHYSICAL REVIEW D, 2009, 79 (08)
[5]   Potentials in N=4 superconformal mechanics [J].
Bellucci, Stefano ;
Krivonos, Sergey .
PHYSICAL REVIEW D, 2009, 80 (06)
[6]   Casimir energy of massive MIT fermions in an Aharonov-Bohm background [J].
Beneventano, CG ;
De Francia, M ;
Kirsten, K ;
Santangelo, EM .
PHYSICAL REVIEW D, 2000, 61 (08)
[7]   Fermionic vacuum polarization by a cylindrical boundary in the cosmic string spacetime [J].
Bezerra de Mello, E. R. ;
Bezerra, V. B. ;
Saharian, A. A. ;
Tarloyan, A. S. .
PHYSICAL REVIEW D, 2008, 78 (10)
[8]   Induced fermionic current densities by magnetic flux in higher dimensional cosmic string spacetime [J].
Bezerra de Mello, Eugenio R. .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (09)
[9]   INDUCED QUANTUM NUMBERS IN (2 + 1)-DIMENSIONAL QED [J].
BLANKENBECLER, R ;
BOYANOVSKY, D .
PHYSICAL REVIEW D, 1986, 34 (02) :612-618
[10]   AXIAL AND PARITY ANOMALIES AND VACUUM CHARGE - A DIRECT APPROACH [J].
BOYANOVSKY, D ;
BLANKENBECLER, R .
PHYSICAL REVIEW D, 1985, 31 (12) :3234-3250