Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography

被引:129
作者
Fjordholm, Ulrik S. [2 ]
Mishra, Siddhartha [2 ]
Tadmor, Eitan [1 ]
机构
[1] Univ Maryland, Inst Phys Sci & Technol, CSCAMM, Dept Math, College Pk, MD 20742 USA
[2] ETH, Dept Math, SAM, CH-8092 Zurich, Switzerland
基金
美国国家科学基金会;
关键词
Shallow water equations; Energy preserving schemes; Energy stable schemes; Eddy viscosity; Numerical diffusion; FINITE-VOLUME SCHEMES; SOURCE TERMS; HYPERBOLIC SYSTEMS; EFFICIENT IMPLEMENTATION; NUMERICAL VISCOSITY; CONSERVATION-LAWS; ORDER; RECONSTRUCTION; STABILITY;
D O I
10.1016/j.jcp.2011.03.042
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider the shallow water equations with non-flat bottom topography. The smooth solutions of these equations are energy conservative, whereas weak solutions are energy stable. The equations possess interesting steady states of lake at rest as well as moving equilibrium states. We design energy conservative finite volume schemes which preserve (i) the lake at rest steady state in both one and two space dimensions, and (ii) one-dimensional moving equilibrium states. Suitable energy stable numerical diffusion operators, based on energy and equilibrium variables, are designed to preserve these two types of steady states. Several numerical experiments illustrating the robustness of the energy preserving and energy stable well-balanced schemes are presented. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:5587 / 5609
页数:23
相关论文
共 42 条
  • [1] ARAKAWA A, 1981, MON WEATHER REV, V109, P18, DOI 10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO
  • [2] 2
  • [3] Arakawa A., 1966, Journal of Computational Physics, V1, P119, DOI [DOI 10.1016/0021-9991(66)90015-5, /10.1016/0021-9991(66)90015-5]
  • [4] Arakawa A., 1977, Methods in Computational Physics: Advances in Research and Applications, P173, DOI [10.1016/B978-0-12-460817-7.50009-4, DOI 10.1016/B978-0-12-460817-7.50009-4]
  • [5] A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows
    Audusse, E
    Bouchut, F
    Bristeau, MO
    Klein, R
    Perthame, B
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) : 2050 - 2065
  • [6] UPWIND METHODS FOR HYPERBOLIC CONSERVATION-LAWS WITH SOURCE TERMS
    BERMUDEZ, A
    VAZQUEZ, E
    [J]. COMPUTERS & FLUIDS, 1994, 23 (08) : 1049 - 1071
  • [7] High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products.: Applications to shallow-water systems
    Castro, Manuel
    Gallardo, Jose E. M.
    Pares, Carlos
    [J]. MATHEMATICS OF COMPUTATION, 2006, 75 (255) : 1103 - 1134
  • [8] Dafermos CM., 2000, Hyperbolic Conservation Laws in Continuum Physics
  • [9] DalMaso G, 1995, J MATH PURE APPL, V74, P483
  • [10] Fjordholm U. S., 2009, LONDON MATH SOC LECT, V363, P93, DOI DOI 10.1017/CBO9781139107068.005