Mapping hybrid functional-structural connectivity traits in the human connectome

被引:49
作者
Amico, Enrico [1 ,2 ]
Goni, Joaquin [1 ,2 ,3 ]
机构
[1] Purdue Univ, Sch Ind Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Purdue Inst Integrat Neurosci, W Lafayette, IN 47907 USA
[3] Purdue Univ, Weldon Sch Biomed Engn, W Lafayette, IN 47907 USA
基金
美国国家卫生研究院;
关键词
Brain connectivity; Human connectome; Structural/functional patterns; Task-sensitive connectivity; INDEPENDENT COMPONENT ANALYSIS; DIFFUSION MRI; RESTING-STATE; SPHERICAL-DECONVOLUTION; INDIVIDUAL-DIFFERENCES; BRAIN ACTIVITY; GRAY-MATTER; TRACTOGRAPHY; FMRI; PARCELLATION;
D O I
10.1162/netn_a_00049
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
One of the crucial questions in neuroscience is how a rich functional repertoire of brain states relates to its underlying structural organization. How to study the associations between these structural and functional layers is an open problem that involves novel conceptual ways of tackling this question. We here propose an extension of the Connectivity Independent Component Analysis (connICA) framework to identify joint structural-functional connectivity traits. Here, we extend connICA to integrate structural and functional connectomes by merging them into common "hybrid" connectivity patterns that represent the connectivity fingerprint of a subject. We tested this extended approach on the 100 unrelated subjects from the Human Connectome Project. The method is able to extract main independent structural-functional connectivity patterns from the entire cohort that are sensitive to the realization of different tasks. The hybrid connICA extracts two main task-sensitive hybrid traits. The first trait encompasses the within and between connections of dorsal attentional and visual areas, as well as frontoparietal circuits. The second trait mainly encompasses the connectivity between visual, attentional, default mode network (DMN), and subcortical network. Overall, these findings confirm the potential of the hybrid connICA for the compression of structural/functional connectomes into integrated patterns from a set of individual brain networks.
引用
收藏
页码:306 / 322
页数:17
相关论文
共 64 条
[61]   The Human Connectome Project: A data acquisition perspective [J].
Van Essen, D. C. ;
Ugurbil, K. ;
Auerbach, E. ;
Barch, D. ;
Behrens, T. E. J. ;
Bucholz, R. ;
Chang, A. ;
Chen, L. ;
Corbetta, M. ;
Curtiss, S. W. ;
Della Penna, S. ;
Feinberg, D. ;
Glasser, M. F. ;
Harel, N. ;
Heath, A. C. ;
Larson-Prior, L. ;
Marcus, D. ;
Michalareas, G. ;
Moeller, S. ;
Oostenveld, R. ;
Petersen, S. E. ;
Prior, F. ;
Schlaggar, B. L. ;
Smith, S. M. ;
Snyder, A. Z. ;
Xu, J. ;
Yacoub, E. .
NEUROIMAGE, 2012, 62 (04) :2222-2231
[62]   The WU-Minn Human Connectome Project: An overview [J].
Van Essen, David C. ;
Smith, Stephen M. ;
Barch, Deanna M. ;
Behrens, Timothy E. J. ;
Yacoub, Essa ;
Ugurbil, Kamil .
NEUROIMAGE, 2013, 80 :62-79
[63]   BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics [J].
Xia, Mingrui ;
Wang, Jinhui ;
He, Yong .
PLOS ONE, 2013, 8 (07)
[64]   The organization of the human cerebral cortex estimated by intrinsic functional connectivity [J].
Yeo, B. T. Thomas ;
Krienen, Fenna M. ;
Sepulcre, Jorge ;
Sabuncu, Mert R. ;
Lashkari, Danial ;
Hollinshead, Marisa ;
Roffman, Joshua L. ;
Smoller, Jordan W. ;
Zoeller, Lilla ;
Polimeni, Jonathan R. ;
Fischl, Bruce ;
Liu, Hesheng ;
Buckner, Randy L. .
JOURNAL OF NEUROPHYSIOLOGY, 2011, 106 (03) :1125-1165